Species distribution models (SDMs) can be used to predict distributions in novel times or space (termed transferability) and fill knowledge gaps for areas that are data poor. In conservation, this can be used to determine the extent of spatial protection required. To understand how well a model transfers spatially, it needs to be independently tested, using data from novel habitats. Here, we test the transferability of SDMs for Hector's dolphin (), a culturally important (taonga) and endangered, coastal delphinid, endemic to Aotearoa New Zealand. We collected summer distribution data from three populations from 2021 to 2023. Using Generalised Additive Models, we built presence/absence SDMs for each population and validated the predictive ability of the top models (with TSS and AUC). Then, we tested the transferability of each top model by predicting the distribution of the remaining two populations. SDMs for two populations showed useful performance within their respective areas (Banks Peninsula and Otago), but when used to predict the two areas outside the models' source data, performance declined markedly. SDMs from the third area (Timaru) performed poorly, both for prediction within the source area and when transferred spatially. When data for model building were combined from two areas, results were mixed. Model interpolation was better when presence/absence data from Otago, an area of low density, were combined with data from areas of higher density, but was otherwise poor. The overall poor transferability of SDMs suggests that habitat preferences of Hector's dolphins vary between areas. For these dolphins, population-specific distribution data should be used for conservation planning. More generally, we demonstrate that a one model fits all approach is not always suitable. When SDMs are used to predict distribution in data-poor areas an assessment of performance in the new habitat is required, and results should be interpreted with caution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262828PMC
http://dx.doi.org/10.1002/ece3.70074DOI Listing

Publication Analysis

Top Keywords

species distribution
8
distribution models
8
habitat preferences
8
aotearoa zealand
8
sdms predict
8
data
8
transferability sdms
8
distribution data
8
sdms
7
areas
7

Similar Publications

A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in non-homogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN).

View Article and Find Full Text PDF

Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen associated conditions like septicaemia, respiratory disorders, and diarrhoea in poultry, particularly in Japanese quail (Coturnix japonica). The infection causes huge economical losses due to its high transmissibility, mortality and zoonotic potential.

View Article and Find Full Text PDF

Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.

View Article and Find Full Text PDF

Bauxite mining has been caused severe changes in the natural ecosystems of the Amazon, but the restoration of these areas is mandatory by federal law in Brazil. The recolonization of fauna is crucial to establishing the ecological functions of recovering forests, and the small nonflying mammals can stand out in this process. Assessing taxonomic and functional diversity parameters, we demonstrated that in the early stages of forest recovery post-bauxite mining, between 6 and 11 years, it is possible to restore approximately 45% of the richness of small non-flying mammal species from the original habitats, that in this case were altered Primary Forests.

View Article and Find Full Text PDF

Distribution and habitat of the painted tree rat (Callistomys pictus): Evaluating areas for future surveys and conservation efforts.

PLoS One

January 2025

Departamento de Ciências Biológicas, Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil.

Knowledge of the potential distribution and locations of poorly known threatened species is crucial for guiding conservation strategies and new field surveys. The painted tree-rat (Callistomys pictus) is a monospecific, rare, and endangered echimyid rodent endemic to the southern Bahia Atlantic Forest in Brazil. There have been no records of the species published in the last 20 years, and the region has experienced significant forest loss and degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!