A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study of the effect of magnetic fields on static degradation of Fe and Fe-12Mn-1.2C in balanced salts modified Hanks' solution. | LitMetric

Study of the effect of magnetic fields on static degradation of Fe and Fe-12Mn-1.2C in balanced salts modified Hanks' solution.

Bioact Mater

Dpto. de Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica, ESCET, Universidad Rey Juan Carlos, Tulipán S/n, 28933, Móstoles, Madrid, Spain.

Published: October 2024

Iron and its alloys are attractive as biodegradable materials because of their low toxicity and suitable mechanical properties; however, they generally have a slow degradation rate. Given that corrosion is an electrochemical phenomenon where an exchange of electrons takes place, the application of magnetic fields from outside the body may accelerate the degradation of a ferrous temporary implant. In the present study, we have investigated the effect of alternating and direct low magnetic field (H = 6.5 kA/m) on the corrosion process of pure iron (Fe) and an iron-manganese alloy (FeMnC) in modified Hanks' solution. A 14-day static immersion test was performed on the materials. The corrosion rate was assessed by mass and cross-sectional loss measurements, scanning electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy before and after degradation. The results show that the presence of magnetic fields significantly accelerates the degradation rate of both materials, with the corrosion rate being twice as high in the case of Fe and almost three times as high for FeMnC. In addition, a homogenous degradation layer is formed over the entire surface and the chemical composition of the degradation products is the same regardless of the presence of a magnetic field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261407PMC
http://dx.doi.org/10.1016/j.bioactmat.2024.06.027DOI Listing

Publication Analysis

Top Keywords

magnetic fields
12
modified hanks'
8
hanks' solution
8
degradation rate
8
magnetic field
8
materials corrosion
8
corrosion rate
8
presence magnetic
8
degradation
7
study magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!