Combinative workflow for mRNA vaccine development.

Biochem Biophys Rep

Gennova Biopharmaceuticals Ltd, ITBT Park, Rajiv Gandhi Infotech Park, Hinjawadi, Phase-2, Pune, Maharashtra, 411057, India.

Published: September 2024

Recently, mRNA has gained a lot of attention in the field of vaccines, gene therapy, and protein replacement therapies. Herein, we are demonstrating a comprehensive approach to designing, cloning, and characterizing an antigenic cassette for the development of mRNA vaccine for COVID-19. The gene encoding the antigenic spike protein of the SARS-CoV-2 Omicron variant (B.1.1.529) was designed using the databases, characterized by tools, and assembled using overlapping oligonucleotide-based assembly by PCR. Next, the gene was cloned, mRNA was synthesized, and characterized using orthogonal approaches (Capillary electrophoresis, Sanger DNA sequencing, Next-generation sequencing, HPLC, qPCR, etc.). Furthermore, the antigen expression was monitored using an animal cell model by western blot, flow cytometer, and surface plasmon resonance. The demonstrated approach has also been followed for developing the mRNA vaccines for various other indications such as Malaria, Herpes, Dengue, HPV, etc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261026PMC
http://dx.doi.org/10.1016/j.bbrep.2024.101766DOI Listing

Publication Analysis

Top Keywords

mrna vaccine
8
development mrna
8
mrna
5
combinative workflow
4
workflow mrna
4
vaccine development
4
mrna gained
4
gained lot
4
lot attention
4
attention field
4

Similar Publications

Circular mRNA Vaccine against SARS-COV-2 Variants Enabled by Degradable Lipid Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China.

The emergence of mRNA vaccines offers great promise and a potent platform in combating various diseases, notably COVID-19. Nevertheless, challenges such as inherent instability and potential side effects of current delivery systems underscore the critical need for the advancement of stable, safe, and efficacious mRNA vaccines. In this study, a robust mRNA vaccine (cmRNA-1130) eliciting potent immune activation has been developed from a biodegradable lipid with eight ester bonds in the branched tail (AX4) and synthetic circular mRNA (cmRNA) encoding the trimeric Delta receptor binding domain of the SARS-CoV-2 spike protein.

View Article and Find Full Text PDF

A Bibliometric Analysis on Multi-epitope Vaccine Development Against SARS-CoV-2: Current Status, Development, and Future Directions.

Mol Biotechnol

January 2025

Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.

The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.

View Article and Find Full Text PDF

Cancer vaccines: platforms and current progress.

Mol Biomed

January 2025

Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation.

View Article and Find Full Text PDF

Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii.

Sci Rep

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.

View Article and Find Full Text PDF

During the COVID-19 pandemic, heterologous vaccination strategies were employed to alleviate the strain on vaccine supplies. The Thailand Ministry of Health adopted these strategies using vector, inactivated, and mRNA vaccines. However, this approach has introduced challenges for SARS-CoV-2 sero-epidemiology studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!