Purpose: Software-based data-driven gated (DDG) positron emission tomography/computed tomography (PET/CT) has replaced hardware-based 4D PET/CT. The purpose of this article was to review DDG PET/CT, which could improve the accuracy of treatment response assessment, tumor motion evaluation, and target tumor contouring with whole-body (WB) PET/CT for radiotherapy (RT).
Material And Methods: This review covered the topics of 4D PET/CT with hardware gating, advancements in PET instrumentation, DDG PET, DDG CT, and DDG PET/CT based on a systematic literature review. It included a discussion of the large axial field-of-view (AFOV) PET detector and a review of the clinical results of DDG PET and DDG PET/CT.
Results: DDG PET matched or outperformed 4D PET with hardware gating. DDG CT was more compatible with DDG PET than 4D CT, which required hardware gating. DDG CT could replace 4D CT for RT. DDG PET and DDG CT for DDG PET/CT can be incorporated in a WB PET/CT of less than 15 min scan time on a PET/CT scanner of at least 25 cm AFOV PET detector.
Conclusions: DDG PET/CT could correct the misregistration and tumor motion artifacts in a WB PET/CT and provide the quantitative PET and tumor motion information of a registered PET/CT for RT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261283 | PMC |
http://dx.doi.org/10.1016/j.phro.2024.100601 | DOI Listing |
Acad Radiol
January 2025
Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 (S.I., M.A.T., M.I., C.S., R.L., A.H., R.L.W., T.J.F.). Electronic address:
Rationale And Objective: Conventional positron emission tomography (PET) respiratory gating utilizes a fraction of acquired PET counts (i.e., optimal gate [OG]), whereas elastic motion correction with deblurring (EMCD) utilizes all PET counts to reconstruct motion-corrected images without increasing image noise.
View Article and Find Full Text PDFAnn Nucl Med
January 2025
Department of Radiology, The University of Osaka Hospital, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Objective: Data-driven respiratory gating (DDG) has recently been introduced to improve image quality in the PET portion of PET/CT examinations. The latest DDG system does not require any external equipment or extended examination time. In this study, we investigated the effects of the new DDG system on the visualization and quantification of breast and upper abdominal cancers, comparing the results with those obtained using the standard free-breathing (STD) PET protocol.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.
Purpose: Clinical whole-body (WB) PET images can be compensated for respiratory motion using data-driven gating (DDG). However, PET DDG images may still exhibit motion artefacts at the diaphragm if the CT is acquired in a different respiratory phase than the PET image. This study evaluates the combined use of PET DDG and a deep-learning model (AIR-PETCT) for elastic registration of CT (WarpCT) to the non attenuation- and non scatter-corrected PET image (PET NAC), enabling improved PET reconstruction.
View Article and Find Full Text PDFEJNMMI Phys
October 2024
Department of Imaging Physics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.
Misregistration between CT and PET in PET/CT is mainly caused by respiratory motion or irregular respiration during the CT scan in PET/CT. Other than repeat CT, repeat PET/CT, or data-driven gated (DDG) CT, there is no practical approach to mitigate the misregistration artifacts and subsequent CT attenuation correction (CTAC) of the PET data. DDG PET derives a respiratory motion model based on the multiple phases of PET images without hardware gating and it allows for a potential correction of the misregistration artifacts based on the respiratory motion model.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
July 2024
Department of Radiation Physics, M.D. Anderson Cancer Center, University of Texas, United States.
Purpose: Software-based data-driven gated (DDG) positron emission tomography/computed tomography (PET/CT) has replaced hardware-based 4D PET/CT. The purpose of this article was to review DDG PET/CT, which could improve the accuracy of treatment response assessment, tumor motion evaluation, and target tumor contouring with whole-body (WB) PET/CT for radiotherapy (RT).
Material And Methods: This review covered the topics of 4D PET/CT with hardware gating, advancements in PET instrumentation, DDG PET, DDG CT, and DDG PET/CT based on a systematic literature review.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!