Pharmaceutical contamination poses a significant threat to global health. Due to their high solubility in water, antibiotics are difficult to remove. This study produced and used sulfonated graphene oxide (SGO) to adsorb sparfloxacin from aquatic environments. UV-Visible, Fourier transform infrared (FTIR), X-ray diffraction (XRD), XPS, SEM, TEM, EDX, particle size, Thermogravimetric analysis (TGA), and acid-base titration were used to characterize synthesized SGO particles. The BET technique determined SGO's surface area (32.25 m/g). The calculated pH of SGO was 2.5. Sparfloxacin adsorption onto SGO was analyzed using adsorption duration, medium pH, adsorbent dosages, antibiotic concentration, cations, and solution temperature. The pseudo-second-order kinetic model better described experimental kinetic data than the pseudo-first-order and Elovich models. Equilibrium isotherm data supported the Langmuir model, revealing a peak absorption capacity of 1428.57 μmol/g at 25 °C. The kinetic and isotherm models' applicability was assessed using error analysis. A thermodynamic analysis revealed an endothermic, spontaneous adsorption process with a change in entropy (Δ) of 114.15 J/mol K and enthalpy (Δ) of 8.44 kJ/mol. A regeneration analysis showed that SGO adsorption efficiency topped 86.4 % after five cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261116 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e33644 | DOI Listing |
Small
January 2025
Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
Research into flexible solid-state supercapacitors for wearable electronics focuses on achieving high performance and safety. Gel polymer electrolytes (GPEs) are preferred over fully solid-state electrolytes due to their better ionic conductivity while addressing safety concerns associated with liquid electrolytes. This study aims to enhance high-performance gel polymer electrolytes (HP-GPEs) by improving the ion transfer rate of polyvinyl alcohol (PVA) with sulfonated hexagonal boron nitride (known as white-graphene) and exploring how rheology influences ion-conduction within HP-GPEs.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of Liberec, 46001 Liberec, Czech Republic.
There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO sensor is designed based on FeO piperidine-4-sulfonic acid grafted onto a reduced graphene oxide FeO@rGO-N-(piperidine-4-SOH) nanocomposite, due to the highly efficient detection of pollution in the air.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Medical Biology, School of Medicine, Atilim University, Ankara 06830, Turkey.
Sildenafil is used to treat erectile dysfunction and pulmonary arterial hypertension but is often illicitly added to energy drinks and chocolates. This study introduces a lateral flow strip test using aptamers specific to sildenafil for detecting its illegal presence in food. The process involved using graphene oxide SELEX to identify high-affinity aptamers, which were then converted into molecular gate structures on mesoporous silica nanoparticles, creating a unique signaling system.
View Article and Find Full Text PDFLangmuir
December 2024
Centre for Research in Nanotechnology and Science, Indian Insitute of Technology Bombay, Mumbai 400076, India.
Emerging contaminants are a matter of growing concern for environmental and human health and safety, requiring efficient and affordable sensing platforms. Laser-induced graphene (LIG) is a novel material with a 3D porous graphene structure that can be fabricated in a simple one-step fabrication process. However, most LIG-based works in electrochemical sensors are limited to polyimide (PI)-based platforms, thus limiting the purview of properties of LIG dependent on the substrate-laser interaction.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China. Electronic address:
Conductive hydrogels are utilized in flexible sensors due to their high-water content, excellent elasticity, and shape controllability. However, the sharp increase in resistance of this material under enormous strain leads to instability in the sensing process. This study presents a straightforward method for creating a stable, recyclable, hybrid ionic-electronic conductive (HIEC) hydrogel via a simple one-pot strategy using polyvinyl alcohol (PVA), bagasse cellulose nanofibrils (CNF), and graphene(G) with sodium dodecylbenzene sulfonate (SDBS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!