The utilization of Machine Learning (ML) techniques in the analysis of the mechanical behavior of fiber-reinforced polymers (FRP) has been increasingly applied in composite materials. The ability to achieve high levels of accuracy, coupled with a reduction in computational cost once the ML models are trained, presents a powerful tool for optimization and in-depth analysis of laminated FRP. This review paper aims to provide insight into the emergence of this trend, offer an overview of various ML algorithms and related subtopics, and demonstrate different implementations of ML from recent studies with a specific focus on the design and optimization of FRP composites. The reviewed studies have exhibited high levels of prediction accuracy and have effectively employed ML to optimize the mechanical properties of composite materials. It was also highlighted that selecting the appropriate ML algorithm and neural network structure is crucial for various problems and data. While the studies reviewed have shown promising results, further research is needed to fully realize the potential of ML in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261093 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e33681 | DOI Listing |
J Chem Inf Model
January 2025
Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, Berlin 10623, Germany.
Machine learning (ML) is a powerful tool for the automated data analysis of molecular dynamics (MD) simulations. Recent studies showed that ML models can be used to identify protein-ligand unbinding pathways and understand the underlying mechanism. To expedite the examination of MD simulations, we constructed PathInHydro, a set of supervised ML models capable of automatically assigning unbinding pathways for the dissociation of gas molecules from [NiFe] hydrogenases, using the unbinding trajectories of CO and H from [NiFe] hydrogenase as a training set.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.
View Article and Find Full Text PDFJ Osteopath Med
January 2025
McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.
Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!