Brivaracetam is a racetam derivative of levetiracetam with very limited data available on its degradation behaviour. An official HPLC method for brivaracetam has not been published yet to resolve the degradation products generated during stability studies. Therefore, an isocratic reverse phase HPLC-UV method was developed for the determination of brivaracetam in the presence of its related impurities and degradation products. Efficient chromatographic separation was achieved on an Inertsil ODS 3 V, 150 mm × 4.6 mm, 5 μ column with the mobile phase containing a mixture of 0.1% v/v trifluoroacetic acid solution and acetonitrile (60 : 40 v/v) at a flow rate of 1.0 ml min with the eluent monitored at 210 nm. The proposed method was validated as per the ICH Q2 (R1) guidelines. The method was validated for specificity, linearity, precision, accuracy and robustness. For the assay, the calibration plot was linear over the concentration range of 141 μg ml to 262 μg ml of brivaracetam with a correlation coefficient () of 0.99981. For the study of related substances, the calibration plot was linear over the concentration range of 0.0147 μg ml to 2.93 μg ml of brivaracetam with a correlation coefficient () of 0.99994 and 0.0148 μg ml to 2.96 μg ml of the base degradation product of brivaracetam with a correlation coefficient () of 0.99994. The proposed method was used to investigate the degradation kinetics of brivaracetam under different stress conditions. The drug was found to be less stable under basic degradation conditions. The method shows consistent recoveries for brivaracetam (100.22% at the 70% level, 100.02% at the 100% level and 99.14% at the 130% level of the test concentration 200 μg ml of brivaracetam). The method was found to be accurate, precise, linear, specific, sensitive, rugged, robust, and useful for characterizing the stability of the drug molecule. The marketed formulation (brand name: Briviact) was analysed by using the proposed method; we have carried out identification, isolation, structural characterisation and toxicity prediction of the alkaline hydrolytic degradation product of brivaracetam by using LC-PDA, preparative HPLC, LC/HESI/LTQ, FTIR and H NMR. The predicted alkaline degradation product was found to be 2-(4-methyl-2-oxo-1-pyrrolidinyl) butyric acid ( a brivaracetam acid impurity generated after alkaline hydrolysis of brivaracetam). toxicity prediction was carried out by using the eMolTox webserver. The synthesis of isolated impurities of brivaracetam has also been carried out successfully.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9ay02582kDOI Listing

Publication Analysis

Top Keywords

degradation product
16
brivaracetam
14
toxicity prediction
12
product brivaracetam
12
proposed method
12
μg brivaracetam
12
brivaracetam correlation
12
correlation coefficient
12
degradation
9
identification isolation
8

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Tilapia lake virus (TiLV) disease is highly contagious and causes substantial mortality in tilapia. Currently, no effective treatments or commercial vaccines are available to prevent TiLV infection. In this study, TiLV segment 4 (S4) was cloned into the pET28a(+)vector and transformed into Escherichia coli BL21(DE3).

View Article and Find Full Text PDF

Metabolic profiling reveals altered amino acid and fatty acid metabolism in children with Williams Syndrome.

Sci Rep

December 2024

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.

Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.

View Article and Find Full Text PDF

LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.

View Article and Find Full Text PDF

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!