Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Diabetes mellitus (DM) affects up to one-third of breast cancer (BC) patients. Patients with co-existing BC and DM (BC-DM) have worsened BC prognosis. Nevertheless, the molecular mechanisms orchestrating BC-DM prognosis remain poorly understood. tRNA-derived fragments (tRFs) have been shown to regulate cancer progression. However, the biological role of tRFs in BC-DM has not been explored.
Methods: tRF levels in tumor tissues and cells were detected by tRF sequencing and qRT-PCR. The effects of tRF on BC cell malignancy were assessed under euglycemic and hyperglycemic conditions in vitro. Metabolic changes were assessed by lactate, pyruvate, and extracellular acidification rate (ECAR) assays. Diabetic animal model was used to evaluate the impacts of tRF on BC tumor growth. RNA-sequencing (RNA-seq), qRT-PCR, Western blot, polysome profiling, luciferase reporter assay, and rescue experiments were performed to explore the regulatory mechanisms of tRF in BC-DM.
Results: We identified that tRF-Cys-GCA-029 was downregulated in BC-DM tissues and under hyperglycemia conditions in BC cells. Functionally, downregulation of tRF-Cys-GCA-029 promoted BC cell proliferation and migration in a glucose level-dependent manner. tRF-Cys-GCA-029 knockdown also enhanced glycolysis metabolism in BC cells, indicated by increasing lactate/pyruvate production and ECAR levels. Notably, injection of tRF-Cys-GCA-029 mimic significantly suppressed BC tumor growth in diabetic-mice. Mechanistically, tRF-Cys-GCA-029 regulated BC cell malignancy and glycolysis via interacting with PRKCG in two ways: binding to the coding sequence (CDS) of PRKCG mRNA to regulate its transcription and altering polysomal PRKCG mRNA expression to modify its translation.
Conclusions: Hyperglycemia-downregulated tRF-Cys-GCA-029 enhances the malignancy and glycolysis of BC cells. tRF-Cys-GCA-029-PRKCG-glycolysis axis may be a potential therapeutic target against BC-DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265092 | PMC |
http://dx.doi.org/10.1186/s13058-024-01870-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!