Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Handwritten Text Recognition (HTR) is a challenging task due to the complex structures and variations present in handwritten text. In recent years, the application of gated mechanisms, such as Long Short-Term Memory (LSTM) networks, has brought significant advancements to HTR systems. This paper presents an overview of HTR using a gated mechanism and highlights its novelty and advantages. The gated mechanism enables the model to capture long-term dependencies, retain relevant context, handle variable length sequences, mitigate error propagation, and adapt to contextual variations. The pipeline involves preprocessing the handwritten text images, extracting features, modeling the sequential dependencies using the gated mechanism, and decoding the output into readable text. The training process utilizes annotated datasets and optimization techniques to minimize transcription discrepancies. HTR using a gated mechanism has found applications in digitizing historical documents, automatic form processing, and real-time transcription. The results show improved accuracy and robustness compared to traditional HTR approaches. The advancements in HTR using a gated mechanism open up new possibilities for effectively recognizing and transcribing handwritten text in various domains. This research does a better job than the most recent iteration of the HTR system when compared to five different handwritten datasets (Washington, Saint Gall, RIMES, Bentham and IAM). Smartphones and robots are examples of low-cost computing devices that can benefit from this research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263560 | PMC |
http://dx.doi.org/10.1038/s41598-024-67738-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!