Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoans is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple loci. Such gene arrangements make the ability to generate homogenous histone mutant genotypes by site-specific gene editing quite difficult. Drosophila melanogaster provides a solution to this problem because the RD histone genes are organized into a single large tandem array that can be deleted and replaced with transgenes containing mutant histone genes. In the last ∼15 years several different RD histone gene replacement platforms were developed using this simple strategy. However, each platform contains weaknesses that preclude full use of the powerful developmental genetic capabilities available to Drosophila researchers. Here we describe the development of a newly engineered platform that rectifies many of these weaknesses. We used CRISPR to precisely delete the RD histone gene array (HisC), replacing it with a multifunctional cassette that permits site-specific insertion of either one or two synthetic gene arrays using selectable markers. We designed this cassette with the ability to selectively delete each of the integrated gene arrays in specific tissues using site-specific recombinases. We also present a method for rapidly synthesizing histone gene arrays of any genotype using Golden Gate cloning technologies. These improvements facilitate the generation of histone mutant cells in various tissues at different stages of Drosophila development and provide an opportunity to apply forward genetic strategies to interrogate chromatin structure and gene regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373521 | PMC |
http://dx.doi.org/10.1093/genetics/iyae117 | DOI Listing |
Cancer Lett
January 2025
Advanced Medical Research Institute, Qilu College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:
Dysregulated lipid metabolism is linked to tumor progression. In this study, we identified Niemann-Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. In breast cancer cells, PKM2 knockout (KO) enhanced NPC1L1 expression while downregulating peroxisome proliferator-activated receptor α (PPARα) signaling pathway.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.
View Article and Find Full Text PDFFront Med
January 2025
Guizhou University Medical College, Guiyang, 550025, China.
The p60 subunit of the chromatin assembly factor-1 complex, that is, chromatin assembly factor-1 subunit B (CHAF1B), is a histone H3/H4 chaperone crucial for the transcriptional regulation of cell differentiation and self-renewal. CHAF1B is overexpressed in several cancers and may represent a potential target for cancer therapy. However, its expression and clinical significance in lung squamous-cell carcinoma (LUSC) remain unclear.
View Article and Find Full Text PDFViruses
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
HDAC6 modulates viral infection through diverse mechanisms. Here, we investigated the role of HDAC6 in influencing viral infection in pig cells with the aim of exploiting the potential antiviral gene targets in pigs. Using gene knockout and overexpression strategies, we found that HDAC6 knockout greatly reduced PRV and VSV infectivity, whereas HDAC6 overexpression increased their infectivity in PK15 cells.
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!