Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Information about social determinants of health (SDOH) is essential for primary care clinicians in the delivery of equitable, comprehensive care, as well as for program planning and resource allocation. SDOH are rarely captured consistently in clinical settings, however. Artificial intelligence (AI) could potentially fill these data gaps, but it needs to be designed collaboratively and thoughtfully. We report on a codesign process with primary care clinicians to understand how an AI tool could be developed, implemented, and used in practice.
Methods: We conducted semistructured, 50-minute workshops with a large urban family health team in Toronto, Ontario, Canada asking their feedback on a proposed AI-based tool used to derive patient SDOH from electronic health record data. An inductive thematic analysis was used to describe participants' perspectives regarding the implementation and use of the proposed tool.
Results: Fifteen participants contributed across 4 workshops. Most patient SDOH information was not available or was difficult to find in their electronic health record. Discussions focused on 3 areas related to the implementation and use of an AI tool to derive social data: people, process, and technology. Participants recommended starting with 1 or 2 social determinants (income and housing were suggested as priorities) and emphasized the need for adequate resources, staff, and training materials. They noted many challenges, including how to discuss the use of AI with patients and how to confirm their social needs identified by the AI tool.
Conclusions: Our codesign experience provides guidance from end users on the appropriate and meaningful design and implementation of an AI-based tool for social data in primary care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268682 | PMC |
http://dx.doi.org/10.1370/afm.3117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!