Iodinated X-ray contrast media (ICM) was frequently detected in the aqueous environment. In this work, the applicability of three graphene-based nanomaterials (graphene nanosheets (GNS), graphene oxide (GO), and reduced graphene oxide (rGO)) for the adsorptive removal of the six ICMs including iohexol, iopamidol, iomeprol, iopromide, iodixanol and ioversol from aqueous solution was firstly evaluated by batch adsorption method. Among the three graphene-based nanomaterials, the GNS displayed the best adsorption performances for the adsorption of the six ICMs. The maximum uptakes of the six ICMs by the GNS (161.5 mg g for iohexol, 267.2 mg g for iodixanol, 197.7 mg g for iopromide, 197.0 mg g for iopamidol, 109.6 mg g for iomeprol, and 168.2 mg g for ioversol) can rapidly achieved within 10 min and indicate no dependence on pH in the range of 4-9. The results obtained from the calculations of isotherms, kinetics and thermodynamic supported the occurrence of a chemisorption of the GNS for the six ICMs. The π-π interactions between benzene ring of the ICMs and the sp-hybridized two-dimensional sheet of GNS were deemed the predominant adsorption mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142915 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of Liberec, 46001 Liberec, Czech Republic.
There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO sensor is designed based on FeO piperidine-4-sulfonic acid grafted onto a reduced graphene oxide FeO@rGO-N-(piperidine-4-SOH) nanocomposite, due to the highly efficient detection of pollution in the air.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Systems Biology, Universidad de Alcalá, Instituto Ramon y Cajal de Investigación Sanitaria, Fundación Renal Iñigo Álvarez de Toledo, 28871 Alcalá de Henares, Spain.
We previously described GMC, a graphene-based nanomaterial obtained from carbon nanofibers (CNFs), to be biologically compatible and functional for therapeutic purposes. GMC can reduce triglycerides' content in vitro and in vivo and has other potential bio-functional effects on systemic cells and the potential utility to be used in living systems. Here, immunoreactivity was evaluated by adding GMC in suspension at the biologically functional concentrations, ranging from 10 to 60 µg/mL, for one or several days, to cultured lymphocytes (T, B, NK), either in basal or under stimulating conditions, and monocytes that were derived under culture conditions to pro-inflammatory (GM-MØ) or anti-inflammatory (M-MØ) macrophages.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Exploring ways to improve the performance of rotating bands is of great importance for enhancing the power of modern artillery. This study prepared graphene oxide-coated Nylon (GO-Nylon) and Nylon samples based on nylon rotating bands in artillery systems to investigate the feasibility of introducing GO-coated nylon rotating band materials to enhance their tribological and thermal properties. The friction behavior and thermal effects of these two surfaces were analyzed under different external loads and surface roughness conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!