Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, thermo-sensitive poly(N-isopropyl acrylamide) (PNP) was polymerized with pH-sensitive poly(acrylic acid) (PAA) to prepare a PAA-b-PNP block copolymer. Above its cloud point, the block copolymer self-assembled into nanoparticles (NPs), encapsulating the anticancer drug camptothecin (CPT) in situ. Chitosan (CS) and fucoidan (Fu) further modified these NPs, forming Fu-CPT-NPs to enhance biocompatibility, drug encapsulation efficiency (EE), and loading content (LC), crucially facilitating P-selectin targeting of lung cancer cells through a drug delivery system. The EE and LC reached 82 % and 3.5 %, respectively. According to transmission electron microscope observation, these Fu-CPT-NPs had uniform spherical shapes with an average diameter of ca. 250 nm. They could maintain their stability in a pH range of 5.0-6.8. In vitro experimental results revealed that the Fu-CPT-NPs exhibited good biocompatibility and had anticancer activity after encapsulating CPT. It could deliver CPT to cancer cells by targeting P-selectin, effectively increasing cell uptake and inducing cell apoptosis. Animal study results showed that the Fu-CPT-NPs inhibited lung tumor growth by increasing tumor cell apoptosis without causing significant tissue damage related to generating reactive oxygen species in lung cancer cells. This system can effectively improve drug-delivery efficiency and treatment effects and has great potential for treating lung cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.133901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!