Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbon dots (CD) are widely investigated particles with interesting fluorescent properties which are reported to be used for various purposes, as they are biocompatible, resistant to photobleaching and with tuneable properties depending on the specific CD surface chemistry. In this work, we report on the possibility to use opportunely designed CD to distinguish among isobaric peptides almost undistinguishable by mass spectrometry, as well as to monitor protein aggregation phenomena. Particularly, cell-penetrating peptides containing the carnosine moiety at different positions in the peptide chain produce sequence specific fluorescent signals. Analogously, different insulin oligomerization states can also be distinguished by the newly proposed experimental approach. The latter is here described in details and can be potentially applied to any kind of peptide or protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2024.07.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!