Type 2 diabetes has long been thought to have heterogenous causes, even though epidemiological studies uniformly show a tight relationship with overnutrition. The twin cycle hypothesis postulated that interaction of self-reinforcing cycles of fat accumulation inside the liver and pancreas, driven by modest but chronic positive calorie balance, could explain the development of type 2 diabetes. This hypothesis predicted that substantial weight loss would bring about a return to the non-diabetic state, permitting observation of the pathophysiology determining the transition. These changes were postulated to reflect the basic mechanisms of causation in reverse. A series of studies over the past 15 years has elucidated these underlying mechanisms. Together with other research, the interaction of environmental and genetic factors has been clarified. This knowledge has led to successful implementation of a national programme for remission of type 2 diabetes. This Review discusses the paucity of evidence for heterogeneity in causes of type 2 diabetes and summarises the in vivo pathophysiological changes, which cause this disease of overnutrition. Type 2 diabetes has a homogenous cause expressed in genetically heterogenous individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2213-8587(24)00157-8 | DOI Listing |
JMIR Res Protoc
January 2025
Decipher Health, Delhi, India.
Background: Type 2 diabetes (T2D) is a leading cause of premature morbidity and mortality globally and affects more than 100 million people in the world's most populous country, India. Nutrition is a critical and evidence-based component of effective blood glucose control and most dietary advice emphasizes carbohydrate and calorie reduction. Emerging global evidence demonstrates marked interindividual differences in postprandial glucose response (PPGR) although no such data exists in India and previous studies have primarily evaluated PPGR variation in individuals without diabetes.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, Minnesota.
Importance: Understanding the interplay between diabetes risk factors and diabetes development is important to develop individual, practice, and population-level prevention strategies.
Objective: To evaluate the progression from normal and impaired fasting glucose levels to diabetes among adults.
Design, Setting, And Participants: This retrospective community-based cohort study used data from the Rochester Epidemiology Project, in Olmsted County, Minnesota, on 44 992 individuals with at least 2 fasting plasma glucose (FPG) measurements from January 1, 2005, to December 31, 2017.
JAMA Otolaryngol Head Neck Surg
January 2025
OptumLabs, Eden Prairie, Minnesota.
Importance: The increasing use of glucagon-like peptide-1 receptor agonists (GLP-1RA) demands a better understanding of their association with thyroid cancer.
Objective: To estimate the risk of incident thyroid cancer among adults with type 2 diabetes being treated with GLP-1RA vs other common glucose-lowering medications.
Design, Setting, And Participants: This was a prespecified secondary analysis of a target trial emulation of a comparative effectiveness study using claims data for enrollees in commercial, Medicare Advantage, and Medicare fee-for-service plans across the US.
Proc Natl Acad Sci U S A
January 2025
Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.
View Article and Find Full Text PDFJ Endocrinol Invest
January 2025
Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands.
Purpose: Elevated methylglyoxal (MGO) levels and altered immune cell responses are observed in diabetes. MGO is thought to modulate immune cell activation. The current study investigated whether fasting or post-glucose-load plasma MGO concentrations are associated with circulating immune cell counts and activation in a large cohort study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!