Deep learning-based IDH1 gene mutation prediction using histopathological imaging and clinical data.

Comput Biol Med

Department of Computer Science, University of Cincinnati, OH 45221, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, OH 45267, USA; Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH 45267, USA. Electronic address:

Published: September 2024

AI Article Synopsis

  • In the study of histopathology, researchers are exploring the classification of whole slide images (WSIs) to assess disease progression in gliomas, which are brain tumors divided into categories like astrocytomas, oligodendrogliomas, and glioblastomas.
  • The focus is particularly on the IDH1 mutation, as it is associated with a better prognosis for patients with low-grade gliomas, making it a critical factor for glioma classification.
  • The research employs ensemble learning techniques combining imaging data from WSIs and clinical information, achieving promising results with the best model yielding an AUC of 0.852, demonstrating that integrating diverse data sources enhances prediction accuracy for IDH1 mutations.

Article Abstract

In the field of histopathology, many studies on the classification of whole slide images (WSIs) using artificial intelligence (AI) technology have been reported. We have studied the disease progression assessment of glioma. Adult-type diffuse gliomas, a type of brain tumor, are classified into astrocytoma, oligodendroglioma, and glioblastoma. Astrocytoma and oligodendroglioma are also called low grade glioma (LGG), and glioblastoma is also called glioblastoma multiforme (GBM). LGG patients frequently have isocitrate dehydrogenase (IDH) mutations. Patients with IDH mutations have been reported to have a better prognosis than patients without IDH mutations. Therefore, IDH mutations are an essential indicator for the classification of glioma. That is why we focused on the IDH1 mutation. In this paper, we aimed to classify the presence or absence of the IDH1 mutation using WSIs and clinical data of glioma patients. Ensemble learning between the WSIs model and the clinical data model is used to classify the presence or absence of IDH1 mutation. By using slide level labels, we combined patch-based imaging information from hematoxylin and eosin (H & E) stained WSIs, along with clinical data using deep image feature extraction and machine learning classifier for predicting IDH1 gene mutation prediction versus wild-type across cohort of 546 patients. We experimented with different deep learning (DL) models including attention-based multiple instance learning (ABMIL) models on imaging data along with gradient boosting machine (LightGBM) for the clinical variables. Further, we used hyperparameter optimization to find the best overall model in terms of classification accuracy. We obtained the highest area under the curve (AUC) of 0.823 for WSIs, 0.782 for clinical data, and 0.852 for ensemble results using MaxViT and LightGBM combination, respectively. Our experimental results indicate that the overall accuracy of the AI models can be improved by using both clinical data and images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108902DOI Listing

Publication Analysis

Top Keywords

clinical data
24
idh mutations
16
idh1 mutation
12
idh1 gene
8
gene mutation
8
mutation prediction
8
astrocytoma oligodendroglioma
8
patients idh
8
classify presence
8
presence absence
8

Similar Publications

Objective: Discussions related to the importance of seeking specific consent for sensitive (e.g., pelvic, rectal) exams performed on anesthetized patients by medical students have been growing.

View Article and Find Full Text PDF

National early warning score 2 plus non-invasive capnography and perfusion index to estimate poor outcomes in emergency departments.

Am J Emerg Med

January 2025

Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain; Emergency Department, Hospital Clínico Universitario, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain.

Background: The study of the inclusion of new variables in already existing early warning scores is a growing field. The aim of this work was to determine how capnometry measurements, in the form of end-tidal CO2 (ETCO2) and the perfusion index (PI), could improve the National Early Warning Score (NEWS2).

Methods: A secondary, prospective, multicenter, cohort study was undertaken in adult patients with unselected acute diseases who needed continuous monitoring in the emergency department (ED), involving two tertiary hospitals in Spain from October 1, 2022, to June 30, 2023.

View Article and Find Full Text PDF

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!