The semiconducting layered transition metal dichalcogenides (e.g., WS) are excellent candidates for the realization of optoelectronic and nanophotonic applications on account of their band gap tunability, high binding energy and oscillator strength of the excitons, strong light-matter interaction, appreciable charge carrier mobility, and valleytronic properties. However, the photoluminescence (PL) emissions are reported to show a nonuniform spatial distribution, with the edges emitting features like defect-bound excitons and biexcitons at low temperatures in addition to the typical excitons and trions. The appearance of these additional PL features has been shown in the literature to have a strong dependence on the presence of S-vacancies and excess charge carriers. We demonstrate an enhancement of the defect-bound excitons and biexcitons by creating a heterostructure of WS with h-BN where the coupling between the charge carriers in WS with the polar phonons in h-BN governs the enhancement. Furthermore, we have performed a comprehensive resonant Raman study with varying polarization and magnetic field which not only confirms the presence of electron-phonon coupling in WS/h-BN heterostructure, it further demonstrates a thermally induced differential resonance behavior with the excitonic level and the defect-induced midgap states (due to S-vacancies at the edge of WS) exhibited by a dome-shaped behavior of the Raman intensities with temperature for the normal and defect-induced phonon modes. The defect-bound Raman modes exhibit maximum resonance at ∼240 K while normal Raman modes show at ∼280 K owing to a thermal variation of the electronic states.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c02629DOI Listing

Publication Analysis

Top Keywords

electron-phonon coupling
8
coupling ws/h-bn
8
ws/h-bn heterostructure
8
defect-bound excitons
8
excitons biexcitons
8
charge carriers
8
raman modes
8
influence edges
4
edges interlayer
4
interlayer electron-phonon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!