Implants made from titanium are used as prostheses because of their biocompatibility and their mechanical properties close to those of human bone. However, the risk of bacterial infection is always a major concern during surgery, and the development of biofilm can make these infections difficult to treat. A promising strategy to mitigate against bacterial infections is the use of antifouling and antimicrobial coatings, where bioresorbable polymers can play an important role due to their controlled degradability and sustained drug release, as well as excellent biocompatibility. In the present study, poly(d,l-lactide) (PDLLA) and poly[d,l-lactide--methyl ether poly(ethylene glycol)] (PDLLA-PEG) were studied, varying the PEG content (20-40% w/w) to analyze the effectiveness of PEG as an antifouling molecule. In addition, silver sulfadiazine (AgSD) was used as an additional antimicrobial agent with a concentration ≤5% w/w and incorporated into the PEGylated polymers to create a polymer with both antifouling and antimicrobial properties. Polymers synthesized were applied using spin coating to obtain homogeneous coatings to protect samples made from titanium/aluminum/vanadium (Ti6Al4V). The polymer coatings had a smoothing effect in comparison to that of the uncoated material, decreasing the contact area available for bacterial colonization. It was also noted that PEG addition into the polymeric chain developed amphiphilic materials with a decrease in contact angle from the most hydrophobic (Ti6Al4V) to the most hydrophilic PDLLA-PEG (60/40), highlighting the increase in water uptake contributing to the hydration layer formation, which confers the antifouling effect on the coating. This study demonstrated that the addition of PEG above 20% w/w and AgSD above 1% w/v into the formulation was able to decrease bacterial adherence against clinically relevant biofilm former strains and .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337155PMC
http://dx.doi.org/10.1021/acsabm.4c00832DOI Listing

Publication Analysis

Top Keywords

antifouling antimicrobial
12
antimicrobial properties
8
antifouling
5
bioresorbable polyester
4
coatings
4
polyester coatings
4
coatings antifouling
4
antimicrobial
4
properties prevention
4
prevention biofilm
4

Similar Publications

The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.

View Article and Find Full Text PDF

This study presents the fabrication and characterization of mixed matrix membranes (MMMs) incorporating green-synthesized silver nanoparticles (AgNPs) using Hibiscus Rosa sinensis extract within a polyethersulfone (PES) matrix for nanofiltration (NF) application. The membranes were evaluated for their pure water permeability, salt rejection, dye removal, and antifouling performance. Results showed that the membrane with 0.

View Article and Find Full Text PDF

Ultrasound-Controllable Release of Carbon Monoxide in Multifunctional Polymer Coating for Synergetic Treatment of Catheter-Related Infections.

Adv Healthc Mater

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

Medical catheters are susceptible to biological contamination and pathogen invasion, leading to infection and inflammatory complications. The development of antimicrobial coatings for medical devices has emerged as a promising strategy. However, limited biological functionality and the incompatibility between bactericidal properties and biosafety remain great challenges.

View Article and Find Full Text PDF

As marine equipment advances from shallow to deep-sea environments, the demand for high-performance antifouling materials continues to increase. The lionfish, a species inhabiting both deep-sea and shallow coral reefs, prevents fouling organism adhesion via its smooth, mucus-covered skin, which contains antimicrobial peptides. Inspired by lionfish skin, this work integrates zwitterionic segments with hydration-based fouling-release properties and the furan oxime ester structure with intrinsic antibacterial activity to develop a silicone-based antifouling coating capable of operating from shallow to deep-sea environments.

View Article and Find Full Text PDF

Cerium oxide NPs (-CeO), with notable performance in various biological tests like redox activity, free radical scavenging, and biofilm inhibition, emerge as significant candidates to address issues in related areas. In this research, copper-decorated -CeO (Cu@-CeO) were first synthesized and then characterized using advanced techniques such as SEM-EDX, XRD, XPS, BET, and ICP-OES. The biochemical properties of the obtained Cu@-CeO nanostructure and its performance in polyethersulfone (PES) membranes were thoroughly investigated in this research study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!