Carbon porous materials containing nitrogen functionalities and encapsulated iron-based active sites have been suggested as electrocatalysts for energy conversion, however their applications to the hydrogenation of organic substrates via electrocatalytic hydrogenation (ECH) remain unexplored. Herein, we report on a Fe@C:N material synthesized with an adapted annealing procedure and tested as electrocatalyst for the hydrogenation of benzaldehyde. Using different concentrations of the organic, and electrolysis coupled to gas chromatography experiments, we demonstrate that it is possible to use such architectures for the ECH of unsaturated organics. Potential control experiments show that ECH faradaic efficiencies >70 % are possible in acid electrolytes, while maintaining selectivity for the alcohol over the pinacol dimerization product. Estimates of product formation rates and turnover frequency (TOF) values suggest that these carbon-encapsulated architectures can achieve competitive performance in acid electrolytes relative to both base and precious metal electrodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696197PMC
http://dx.doi.org/10.1002/cssc.202400546DOI Listing

Publication Analysis

Top Keywords

electrocatalytic hydrogenation
8
hydrogenation benzaldehyde
8
acid electrolytes
8
porous n-doped
4
n-doped carbon-encapsulated
4
carbon-encapsulated iron
4
iron novel
4
novel catalyst
4
catalyst architecture
4
architecture electrocatalytic
4

Similar Publications

Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.

View Article and Find Full Text PDF

Ligand-induced changes in the electrocatalytic activity of atomically precise Au nanoclusters.

Chem Sci

January 2025

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China

Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.

View Article and Find Full Text PDF

Design Criteria for Active and Selective Catalysts in the Nitrogen Oxidation Reaction.

ACS Phys Chem Au

January 2025

University of Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Universitätsstraße 5, Essen 45141, Germany.

The direct conversion of dinitrogen to nitrate is a dream reaction to combine the Haber-Bosch and Ostwald processes as well as steam reforming using electrochemistry in a single process. Regrettably, the corresponding nitrogen oxidation (NOR) reaction is hampered by a selectivity problem, since the oxygen evolution reaction (OER) is both thermodynamically and kinetically favored in the same potential range. This opens the search for the identification of active and selective NOR catalysts to enable nitrate production under anodic reaction conditions.

View Article and Find Full Text PDF

Catalytic reduction of NAD(P) to NAD(P)H.

Chem Commun (Camb)

January 2025

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.

1,4-Dihydronicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) are essential cofactors required for all living cells, playing pivotal roles in multiple biological processes such as energy metabolism and biosynthesis. NADPH is produced during photosynthesis by the combination of photosystem II, where water is oxidised, and photosystem I, where NADP is reduced. This review focuses on catalytic NAD(P) (and its analogues) reduction to generate 1,4-NAD(P)H without formation of other regioisomers and the dimer.

View Article and Find Full Text PDF

Widely used catalysts for electrocatalytic hydrogen (H) evolution reaction (HER) have high platinum (Pt) contents and show low efficiencies in neutral and alkaline solutions. Herein, a carbon nanotube (CNT) supported Pt catalyst (Pt/CNT45) with 1 wt.% Pt is fabricated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!