The virus poses a longstanding and enduring danger to various forms of life. Despite the ongoing endeavors to combat viral diseases, there exists a necessity to explore and develop novel therapeutic options. Antiviral peptides are bioactive molecules with a favorable toxicity profile, making them promising alternatives for viral infection treatment. Therefore, this article employed a generative adversarial network for antiviral peptide augmentation and a novel two-step authentication process for augmented synthetic peptides to enhance antiviral activity prediction. Additionally, five widely utilized deep learning models were employed for classification purposes. Initially, a GAN was used to augment the antiviral peptide. In a two-step authentication process, the NCBI-BLAST was utilized to identify the antiviral activity resemblance between the synthetic and real peptide. Subsequently, the hydrophobicity, hydrophilicity, hydroxylic nature, positive charge, and negative charge of synthetic and authentic antiviral peptides were compared before their utilization. Later, to examine the impact of authenticated peptide augmentation in the prediction of antiviral peptides, a comparison is conducted with the outcomes of non-peptide augmented prediction. The study demonstrates that the 1-D convolution neural network with augmented peptide exhibits superior performance compared to other employed classifiers and state-of-the-art models. The network attains a mean classification accuracy of 95.41%, an AUC value of 0.95, and an MCC value of 0.90 on the benchmark antiviral and anti-corona peptides dataset. Thus, the performance of the proposed model indicates its efficacy in predicting the antiviral activity of peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2024.3431688DOI Listing

Publication Analysis

Top Keywords

antiviral peptides
12
antiviral activity
12
antiviral
9
generative adversarial
8
antiviral peptide
8
peptide augmentation
8
two-step authentication
8
authentication process
8
peptide
6
peptides
6

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Interferon-Stimulated Genes and Immune Metabolites as Broad-Spectrum Biomarkers for Viral Infections.

Viruses

January 2025

Center for Virus-Host-Innate-Immunity, Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.

The type I interferon (IFN-I) response is a critical component of the immune defense against various viral pathogens, triggering the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs encode proteins with diverse antiviral functions, targeting various stages of viral replication and restricting infection spread. Beyond their antiviral functions, ISGs and associated immune metabolites have emerged as promising broad-spectrum biomarkers that can differentiate viral infections from other conditions.

View Article and Find Full Text PDF

HDAC6 Facilitates PRV and VSV Infection by Inhibiting Type I Interferon Production.

Viruses

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

HDAC6 modulates viral infection through diverse mechanisms. Here, we investigated the role of HDAC6 in influencing viral infection in pig cells with the aim of exploiting the potential antiviral gene targets in pigs. Using gene knockout and overexpression strategies, we found that HDAC6 knockout greatly reduced PRV and VSV infectivity, whereas HDAC6 overexpression increased their infectivity in PK15 cells.

View Article and Find Full Text PDF

The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!