Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motor imagery refers to the brain's response during the mental simulation of physical activities, which can be detected through electroencephalogram (EEG) signals. However, EEG signals exhibit a low signal-to-noise ratio (SNR) due to various artifacts originating from other physiological sources. To enhance the classification performance of motor imagery tasks by increasing the SNR of EEG signals, several signal decomposition approaches have been proposed. Empirical mode decomposition (EMD) has shown promising results in extracting EEG components associated with motor imagery tasks more effectively than traditional linear decomposition algorithms such as Fourier and wavelet methods. Nevertheless, the EMD-based algorithm suffers from a significant challenge known as mode mixing, where frequency components intertwine with the intrinsic mode functions obtained through EMD. This issue severely hampers the accuracy of motor imagery classification. Despite numerous algorithms proposed, mode mixing remains a persistent issue. In this paper, we propose the Deep-EMD algorithm, a deep neural network-based approach to mode mixing problem. We employ two datasets to compare the motor imagery classification and mode mixing improvement achieved by the conventional EMD algorithms. Our experimental results demonstrate that the Deep-EMD algorithm effectively mitigates the mode mixing problem in decomposed EEG components, leading to improved motor imagery classification performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2024.3432102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!