A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel type of malformed floral organs mutant in barley was conferred by loss-of-function mutations of the MADS-box gene HvAGL6. | LitMetric

The advanced model of floral morphogenesis is based largely on data from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but this process is less well understood in the Triticeae. Here, we investigated a sterile barley (Hordeum vulgare) mutant with malformed floral organs (designated mfo1), of which the paleae, lodicules, and stamens in each floret were all converted into lemma-like organs, and the ovary was abnormally shaped. Combining bulked-segregant analysis, whole-genome resequencing, and TILLING approaches, the mfo1 mutant was attributed to loss-of-function mutations in the MADS-box transcription factor gene HvAGL6, a key regulator in the ABCDE floral morphogenesis model. Through transcriptomic analysis between young inflorescences of wild-type and mfo1 plants, 380 genes were identified as differentially expressed, most of which function in DNA binding, protein dimerization, cell differentiation, or meristem determinacy. Regulatory pathway enrichment showed HvAGL6 associates with transcriptional abundance of many MADS-box genes, including the B-class gene HvMADS4. Mutants with deficiency in HvMADS4 exhibited the conversion of stamens into supernumerary pistils, producing multiple ovaries resembling the completely sterile multiple ovaries 3.h (mov3.h) mutant. These findings demonstrate that the regulatory model of floral morphogenesis is conserved across plant species and provides insights into the interactions between HvAGL6 and other MADS-box regulators.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.16936DOI Listing

Publication Analysis

Top Keywords

floral morphogenesis
12
malformed floral
8
floral organs
8
loss-of-function mutations
8
mutations mads-box
8
gene hvagl6
8
model floral
8
multiple ovaries
8
floral
5
novel type
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!