Intercalation-Induced Irreversible Lattice Distortion in Layered Double Hydroxides.

ACS Nano

Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.

Published: July 2024

Inducing strain in the lattice effectively enhances the intrinsic activity of electrocatalysts by shifting the metal's d-band center and tuning the binding energy of reaction intermediates. NiFe-layered double hydroxides (NiFe LDHs) are promising electrocatalysts for the oxygen evolution reaction (OER) due to their cost-effectiveness and high catalytic activity. The distorted β-NiOOH phase produced by the Jahn-Teller effect under the oxidation polarization is known to exhibit superior catalytic activity, but it eventually transforms to the undistorted γ-NiOOH phase during the OER process. Such a reversible lattice distortion limits the OER activity. In this study, we propose a facile boron tungstate (BWO) anion intercalation method to induce irreversible lattice distortion in NiFe LDHs, leading to significantly enhanced OER activity. Strong interactions with BWO anions induce significant stress on the LDH's metal-hydroxide slab, leading to an expansion of metal-oxygen bonds and subsequent lattice distortion. Raman spectroscopy revealed that lattice-distorted NiFe LDHs (D-NiFe LDHs) stabilize the β-NiOOH phase under the OER conditions. Consequently, D-NiFe LDHs exhibited low OER overpotentials (209 and 276 mV for 10 and 500 mA cm, respectively), along with a modest Tafel slope (33.4 mV dec). Moreover, D-NiFe LDHs demonstrated excellent stability at 500 mA cm for 50 h, indicating that the lattice distortion of the LDHs is irreversible. The intercalation-induced lattice strain reported in this study can provide a general strategy to enhance the activity of electrocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c04832DOI Listing

Publication Analysis

Top Keywords

lattice distortion
20
nife ldhs
12
d-nife ldhs
12
irreversible lattice
8
double hydroxides
8
activity electrocatalysts
8
catalytic activity
8
β-niooh phase
8
phase oer
8
oer activity
8

Similar Publications

Recent activity in the area of chiroptical phenomena has been focused on the connection between structural asymmetry, electron spin configuration and light/matter interactions in chiral semiconductors. In these systems, spin-splitting phenomena emerge due to inversion symmetry breaking and the presence of extended electronic states, yet the connection to chiroptical phenomena is lacking. Here, we develop an analytical effective mass model of chiral excitons, parameterized by density functional theory.

View Article and Find Full Text PDF

Reversible electrochemical extraction using cathode materials shows great potential for selective lithium extraction from low-concentration aqueous sources. However, ion selectivity and structural distortion challenges have limited its application to sources like seawater. Here, we synthesize Nb-modified LiMnO using a simple wet chemistry coating method, introducing minimal structural defects in the LiMnO materials and enhancing stability with a LiNbO coating to limit lattice expansion.

View Article and Find Full Text PDF

In halide perovskites, photocarriers can have strong polaronic interactions with point defects. For iodide-deficient MAPbI, we found that the Fermi level can shift significantly by 0.6-0.

View Article and Find Full Text PDF

Boosting Carrier Mobility in 2D Layered Perovskites for High-Performance UV Photodetector.

Small Methods

January 2025

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, P. R. China.

2D hybrid perovskites have attracted great interest due to their promising potential in photodetectors. The phase structure, dielectric, and excitonic properties in 2D perovskites play a pivotal role in the performance of the corresponding optoelectronic device. Here a lattice anchoring method is demonstrated to boost carrier mobility in 2D perovskites by tailoring large organic spacer cation layers.

View Article and Find Full Text PDF

Lead-free halide double perovskites (DPs) have become a research hotspot in the field of photoelectrons due to their unique optical properties and flexible compositional tuning. However, the luminescence of DPs exhibits thermal quenching at high temperatures, which severely affects their further application. Herein, we synthesized the rare earth Dy and transition metal Mn codoped CsNaYCl rare earth DPs and characterized the optical properties using temperature-dependent photoluminescence spectra and time-resolved photoluminescence decay profiles at different temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!