Stabilization of lead (Pb)- and arsenic (As)-contaminated soil using pen shells (Atrina pectinata).

Environ Sci Pollut Res Int

Department of Environmental Engineering, Chosun University, Gwangju, 61452, Republic of Korea.

Published: July 2024

Pen shells (PS), a type of shellfish, are abundantly consumed, and their inedible shell residues are often discarded near the coast without consideration of reutilization. This study sought to investigate the use of natural pen shells (NPS) and calcined pen shells (CPS) to stabilize Pb and As-contaminated soil. During the investigation, NPS and CPS were applied to the contaminated soil in amounts ranging from 1 to 10 wt% and cured for 28 days. After the curing process, the mineral phase was examined through X-ray powder diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analysis. The XRD and SEM-EDX results revealed the presence of riversideite and ettringite, which contribute to Pb and As stabilization in the CPS-treated soil. The leachability of Pb and As in the treated soil was further examined with three types of chemical extraction methods. Extraction results using 0.1 M HCl displayed a notable pH fluctuation in the extractant due to the residual amendments (NPS and CPS). The fluctuation resulted in a strong correlation of leached Pb and As with the pH of the extractant, which might hinder an accurate assessment of stabilization. In order to minimize the effect of pH, an EDTA-NHOAc extraction was employed, suggesting its potential as a suitable assessment method. EDTA-NHOAc extraction showed a higher effectiveness of CPS than NPS at 10 wt% of input amounts. In the SBET extraction, that uses a strongly acidic solution, a higher As leachability was observed by increasing the addition of CPS, which implied a CPS-related chemical fixation mechanism. The comparison of various extraction methods showed a higher CPS effectiveness as compared to NPS. However, it was recommended that CPS-treated soil required caution in strongly acidic conditions, especially for arsenic. This study explores the applicability of PS, which has not been investigated as an amendment for Pb and As-contaminated soil previously. Furthermore, this study revealed that utilization of various extraction methods is beneficial for gaining a comprehensive understanding of the role of CaCO-based amendment in Pb and As-contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34362-yDOI Listing

Publication Analysis

Top Keywords

as-contaminated soil
16
pen shells
16
extraction methods
12
soil
8
nps cps
8
cps-treated soil
8
edta-nhoac extraction
8
amendment as-contaminated
8
extraction
7
cps
6

Similar Publications

Specific Enrichment of Carrying Microorganisms with Nitrogen Fixation and Dissimilatory Nitrate Reduction Function Enhances Arsenic Methylation in Plant Rhizosphere Soil.

Environ Sci Technol

January 2025

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China.

Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of , a potential As hyperaccumulator. was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment.

View Article and Find Full Text PDF

Linear-no-threshold concept for evaluating arsenic toxicity in rice grains.

J Hazard Mater

December 2024

Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085,  India; Homi Bhabha National Institute, Mumbai 400094, India. Electronic address:

Arsenic (As) is a potent carcinogen that enters the human food chain mainly through rice, which is one of the staple food crops worldwide. During February 2022, a market survey was conducted and 500 samples of rice grains were collected across 41 different locations in Mumbai/Navi-Mumbai. On the basis of grain As-accumulation, samples were grouped into three categories including low- (0-30 ng g DW), medium- (31-70 ng g DW) or high- (>71 ng g DW).

View Article and Find Full Text PDF

This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.

View Article and Find Full Text PDF

Arsenic (As) is a non-essential carcinogenic metalloid and an issue of concern for rice crops. This study investigated the effects of sulfur-loaded tea waste biochar (TWB) due to modification with sodium sulfide (SSTWB) or thiourea (TUTWB) on As stress and accumulation in rice plants. The results showed that sulfur-modified TWB improved plant morphology compared to plants grown in As-contaminated soil alone.

View Article and Find Full Text PDF

Arsenic bioaccessibility in environmentally important arsenic minerals.

J Hazard Mater

December 2024

Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, Prague 128 00, Czech Republic.

The potential risk to humans from incidental ingestion of As-contaminated soil and mine waste is influenced by the mineralogical composition of the As phases present. Using the Solubility Bioaccessibility Research Consortium in vitro assay, simulating gastric conditions, we determined the oral bioaccessibility of As in 16 environmentally important As mineral(oid)s commonly found in mine waste and contaminated soils. Our results revealed a wide range of bioaccessibility values closely related to the solubility of the mineral(oid)s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!