Machine learning for the adsorptive removal of ciprofloxacin using sugarcane bagasse as a low-cost biosorbent: comparison of analytic, mechanistic, and neural network modeling.

Environ Sci Pollut Res Int

TECNOCEA-H2O Group (Center for Environmental Studies), Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, 010203, Cuenca, Ecuador.

Published: July 2024

Contamination with traces of pharmaceutical compounds, such as ciprofloxacin, has prompted interest in their removal via low-cost, efficient biomass-based adsorption. In this study, classical models, a mechanistic model, and a neural network model were evaluated for predicting ciprofloxacin breakthrough curves in both laboratory- and pilot scales. For the laboratory-scale (d = 2.2 cm, C = 5 mg/L, Q = 7 mL/min, T = 18 °C) and pilot-scale (D = 4.4 cm, C = 5 mg/L, Q = 28 mL/min, T = 18 °C) setups, the experimental adsorption capacities were 2.19 and 2.53 mg/g, respectively. The mechanistic model reproduced the breakthrough data with high accuracy on both scales (R > 0.4 and X < 0.15), and its fit was higher than conventional analytical models, namely the Clark, Modified Dose-Response, and Bohart-Adams models. The neural network model showed the highest level of agreement between predicted and experimental data with values of R = 0.993, X = 0.0032 (pilot-scale) and R = 0.986, X = 0.0022 (laboratory-scale). This study demonstrates that machine learning algorithms exhibit great potential for predicting the liquid adsorption of emerging pollutants in fixed bed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34345-zDOI Listing

Publication Analysis

Top Keywords

neural network
8
mechanistic model
8
machine learning
4
learning adsorptive
4
adsorptive removal
4
removal ciprofloxacin
4
ciprofloxacin sugarcane
4
sugarcane bagasse
4
bagasse low-cost
4
low-cost biosorbent
4

Similar Publications

Automated ultrasonography of hepatocellular carcinoma using discrete wavelet transform based deep-learning neural network.

Med Image Anal

January 2025

Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea. Electronic address:

This study introduces HCC-Net, a novel wavelet-based approach for the accurate diagnosis of hepatocellular carcinoma (HCC) from abdominal ultrasound (US) images using artificial neural networks. The HCC-Net integrates the discrete wavelet transform (DWT) to decompose US images into four sub-band images, a lesion detector for hierarchical lesion localization, and a pattern-augmented classifier for generating pattern-enhanced lesion images and subsequent classification. The lesion detection uses a hierarchical coarse-to-fine approach to minimize missed lesions.

View Article and Find Full Text PDF

Reducing reading time and assessing disease in capsule endoscopy videos: A deep learning approach.

Int J Med Inform

January 2025

University of Coimbra, Faculty of Medicine, Coimbra, Portugal; Department of Gastroenterology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal. Electronic address:

Background: The wireless capsule endoscope (CE) is a valuable diagnostic tool in gastroenterology, offering a safe and minimally invasive visualization of the gastrointestinal tract. One of the few drawbacks identified by the gastroenterology community is the time-consuming task of analyzing CE videos.

Objectives: This article investigates the feasibility of a computer-aided diagnostic method to speed up CE video analysis.

View Article and Find Full Text PDF

Diffuse Large B-cell Lymphoma (DLBCL) is a lymphatic cancer of steadily growing incidence. Its diagnostic and follow-up rely on the analysis of clinical biomarkers and 18F-Fluorodeoxyglucose (FDG)-PET/CT images. In this context, we target the problem of assisting in the early identification of high-risk DLBCL patients from both images and tabular clinical data.

View Article and Find Full Text PDF

The role of the hippocampus in working memory and word reading: Novel neural correlates of reading among youth living in the context of economic disadvantage.

Dev Cogn Neurosci

December 2024

Child Mind Institute, New York, NY, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA. Electronic address:

A left-lateralized cortical reading circuit underlies successful reading and fails to engage in individuals with reading problems. Studies identifying this circuit included youth from economically advantaged backgrounds and focused on cortical, not subcortical, structures. However, among youth with low scores on reading tests who are living in the context of economic disadvantage, this brain network is actively engaged during reading, despite persistent reading problems.

View Article and Find Full Text PDF

A comprehensive scoping review on machine learning-based fetal echocardiography analysis.

Comput Biol Med

January 2025

Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.

Fetal echocardiography (ultrasound of the fetal heart) plays a vital role in identifying heart defects, allowing clinicians to establish prenatal and postnatal management plans. Machine learning-based methods are emerging to support the automation of fetal echocardiographic analysis; this review presents the findings from a literature review in this area. Searches were queried at leading indexing platforms ACM, IEEE Xplore, PubMed, Scopus, and Web of Science, including papers published until July 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!