The main pathogenesis of the frozen shoulder is thought to be the inflammation of the intra-articular synovium and subsequent fibrosis of the shoulder joint capsule. However, the molecular pathogenesis of the frozen shoulder is still unknown. A class of noncoding RNAs, microRNAs contribute to various diseases including musculoskeletal diseases. MicroRNA-26a (miR-26a) has been reported to be associated with fibrosis in several organs. This study aims to reveal the role of miR-26a on fibrosis in the shoulder capsule using a frozen shoulder model in miR-26a deficient (miR-26a KO) mice. MiR-26a KO and wild-type (WT) mice were investigated using a frozen shoulder model. The range of motion (ROM) of the shoulder, histopathological changes such as synovitis, and fibrosis-related gene expression in the model mice were evaluated to determine the role of miR-26a. In WT mice, both inflammatory cell infiltration and thickening of the inferior shoulder joint capsule were observed after 1 week of immobilization, and this thickening further progressed over the subsequent 6 weeks. However, the immobilized shoulder in miR-26a KO mice consistently exhibited significantly better ROM compared with WT mice at 1 and 6 weeks, and histological changes were significantly less severe. The expression of inflammation- and fibrosis-related genes was decreased in the miR-26a KO mice compared with WT mice at 1 and 6 weeks. Together, miR-26a deficiency attenuated the severity of frozen shoulder in the immobilization model mouse. The present study suggests that miR-26a has the potential to be a target miRNA for therapeutic approach to frozen shoulder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.25940 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!