Necroptosis is a regulated form of cell death with implications in various physiological and pathological processes in multiple tissues. However, the relevant findings from post-mitotic tissues, such as skeletal muscle, are scarce. This review summarizes the potential contributions of necroptosis to skeletal muscle health and diseases. It first discusses the physiological roles of necroptosis in muscle regeneration and development. It then summarizes the contributions of necroptosis to the pathogenesis of multiple muscle diseases, including muscular dystrophies, inflammatory myopathies, cachexia, and neuromuscular disorders. Lastly, it unravels the gaps in our understanding and therapeutic challenges of inhibiting necroptosis as a potential intervention for muscle diseases. Specifically, the findings from the transgenic animal models and the use of pharmacological inhibitors of necroptosis are discussed with relevance to improving the structure and/or function of skeletal muscle in various diseases. Recent developments from experimental animal models and clinical data are presented to discuss the roles of necroptosis in skeletal muscle health and diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-024-02994-1 | DOI Listing |
Arch Physiol Biochem
January 2025
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Minnesota Duluth, Duluth, MN, USA.
Background: When designing cutting-edge technology, particularly humanoid social robots, an essential consideration is understanding how individuals naturally engage in social interactions, shaping their relationships with technology and media.
Method: In pursuit of insights into the application of natural human behavior, specifically reciprocation, in human-robot interaction, an experiment involving 72 participants, involving facial electromyography, focusing on zygomatic and corrugator muscles, served as a tool to gauge users' emotional valence during interactions. The study assessed users' willingness to reciprocate a favor and measured compliance by tracking the number of raffle tickets purchased by users at the robot's request.
FASEB Bioadv
January 2025
Department of Chemistry, Graduate School of Science Chiba University Chiba Japan.
Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.
View Article and Find Full Text PDFDiscov Med (Cham)
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada.
Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.
View Article and Find Full Text PDFBiomed Rep
March 2025
Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia.
Dual oxidases (DUOX) are enzymes that have the main function in producing reactive oxygen species (ROS) in various tissues. DUOX also play an important role in the synthesis of HO, which is essential for the production of thyroid hormone. Thyroid hormones can influence the process of muscle development through direct stimulation of ROS, 5' AMP-activated protein kinase (AMPK) and mTOR and indirect effect autophagy and the insulin-like growth factor 1 (IGF-1) pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!