Exine, this complex sporopollenin-containing and highly variable among taxa envelope of the male gametophyte, consists of two layers, ectexine and endexine. We traced in detail the pollen wall development in Lysimachia vulgaris (Primulaceae), with emphasis on driving forces and critical ontogenetic time. By observation on the sequence of the emergent patterns and by analysis of their substructure with TEM, we intended to clarify the obvious and not-obvious ways of exine construction and to find out the common features in pattern development in other representatives in living nature. The ectexine and endexine ontogeny follows the main stages observed in many other species: first, the appearance of microspore plasma membrane invaginations with isotropic contents within, changed later to anisotropic state; then successive appearance of spherical, rod-like, and lamellate units in the periplasmic space. The lamellate endexine appears unusually early in the exine development. All these elements and their aggregations are manifestation of well-known physical phenomena: phase separation and micellar self-assembly. A consideration of similar surface patterns in very remote taxa suggests the participation in their development of some general nature phenomena as the lows of space-filling operations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-024-01970-x | DOI Listing |
J Exp Bot
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (), including their chromosomal distribution, evolutionary relationships, and expression profiles. A total of 58 genes were identified, distributed across all 12 chromosomes.
View Article and Find Full Text PDFNat Plants
January 2025
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
Nanoparticle-mediated delivery of nucleic acids and proteins into intact plants has the potential to modify metabolic pathways and confer desirable traits in crops. Here we show that layered double hydroxide (LDH) nanosheets coated with lysozyme are actively taken up into the root tip, root hairs and lateral root junctions by endocytosis, and translocate via an active membrane trafficking pathway in plants. Lysozyme coating enhanced nanosheet uptake by (1) loosening the plant cell wall and (2) stimulating the expression of endocytosis and other membrane trafficking genes.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China.
BMC Plant Biol
December 2024
College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
Pollen development and germination play a crucial role in the sexual reproduction of plants. This study analysis of transcriptional dynamics of foxtail millet pollen with other tissues and organs (ovule, glume, seedling and root) through RNA-sequencing revealed that a total of 940 genes were up-regulated in foxtail millet pollen. Based on this, we analyzed the genes involved in pollen tube growth of receptor kinases and small peptides, calcium signaling, small G proteins, vesicle transport, cytoskeleton, cell wall correlation, and transcription factors that are up-regulated in pollen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!