Interfacial electron transport in multicomponent systems plays a crucial role in controlling electrical conductivity. Organic-inorganic heterostructures electronic devices where all the entities are covalently bonded to each other can reduce interfacial electrical resistance, thus suitable for low-power consumption electronic operations. Programmed heterostructures of covalently bonded interfaces between ITO-ethynylbenzene (EB) and EB-zinc ferrite (ZF) nanoparticles, a programmed structure showing 67 978-fold enhancement of electrical current as compared to pristine NPs-based two terminal devices are created. An electrochemical approach is adopted to prepare nearly π-conjugated EB oligomer films of thickness ≈26 nm on ITO-electrode on which ZF NPs are chemically attached. A "flip-chip" method is employed to combine two EB-ZnFeO NPs-ITO to probe electrical conductivity and charge conduction mechanism. The EB-ZnFeO NPs exhibit strong electronic coupling at ITO-EB and EB-NPs with an energy barrier of 0.13 eV between the ITO Fermi level and the LUMO of EB-ZF NPs for efficient charge transport. Both the DC and AC-based electrical measurements manifest a low resistance at ITO-EB and EB-ZF NPs, revealing enhanced electrical current at ± 1.5 V. The programmed heterostructure devices can meet a strategy to create well-controlled molecular layers for electronic applications toward miniaturized components that shorten charge carrier distance, and interfacial resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202403108 | DOI Listing |
Sci Rep
December 2024
Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang, 330096, China.
Cu-1.33Ni-1.35Sn-0.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China.
Due to its "ferroionic" nature, CuInPS combines switchable ferroelectric polarization with highly mobile Cu ions, allowing for multiple resistance states. Its conductive mechanism involves ferroelectric switching, ion migration, and corresponding intercoupling, which are highly sensitive to external electric field. Distinguishing the dominant contribution of either ferroelectric switching or ion migration to dynamic conductivity remains a challenge and the conductive mechanism is not clear yet.
View Article and Find Full Text PDFFront Public Health
December 2024
Wastewater Technology Research, Wastewater Disposal, German Environment Agency, Berlin, Germany.
Introduction: Accurate and consistent data play a critical role in enabling health officials to make informed decisions regarding emerging trends in SARS-CoV-2 infections. Alongside traditional indicators such as the 7-day-incidence rate, wastewater-based epidemiology can provide valuable insights into SARS-CoV-2 concentration changes. However, the wastewater compositions and wastewater systems are rather complex.
View Article and Find Full Text PDFHeliyon
December 2024
Mechanical Engineering Division, Faculty of Engineering, Khon Kaen University, Thailand.
Phase change materials (PCMs) have been widely recognized as a highly efficient medium for thermal energy storage. Many studies have identified the low thermal conductivity of PCMs. In the current investigation, the researchers have blended PCM with nanoparticles to enhance its thermal conductivity and electrical efficiency.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; "GG hydrogels") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!