The optimization and detailed characterization of gastrointestinal organoid models require advanced methods for analyzing their luminal environments. This paper presents a highly reproducible method for the precise measurement of pH within the lumina of 3D human gastric organoids via micromanipulator-controlled microelectrodes. The pH microelectrodes are commercially available and consist of beveled glass tips of 25 µm in diameter. For measurements, the pH microelectrode is advanced into the lumen of an organoid (>200 µm) that is suspended in Matrigel, while a reference electrode rests submerged in the surrounding medium in the culture plate. Using such microelectrodes to profile organoids derived from the human gastric body, we demonstrate that luminal pH is relatively consistent within each culture well at ~7.7 ± 0.037 and that continuous measurements can be obtained for a minimum of 15 min. In some larger organoids, the measurements revealed a pH gradient between the epithelial surface and the lumen, suggesting that pH measurements in organoids can be achieved with high spatial resolution. In a previous study, microelectrodes were successfully used to measure luminal oxygen concentrations in organoids, demonstrating the versatility of this method for organoid analyses. In summary, this protocol describes an important tool for the functional characterization of the complex luminal space within 3D organoids.

Download full-text PDF

Source
http://dx.doi.org/10.3791/66900DOI Listing

Publication Analysis

Top Keywords

human gastric
8
organoids
7
microelectrodes
5
profiling luminal
4
luminal three-dimensional
4
three-dimensional gastrointestinal
4
gastrointestinal organoids
4
organoids microelectrodes
4
microelectrodes optimization
4
optimization detailed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!