AI Article Synopsis

  • This study explores how multicellular cyanobacteria use a protein called FraI, associated with the gene Npun_F4142, to maintain cell communication and coordination for physiological processes like differentiation.
  • The FraI knockout mutant shows diminished traits like reduced motility and the inability to form heterocysts, indicating that FraI is vital for the structural integrity of cellular junctions.
  • Despite disrupted communication, the mutant still shows some movement in its hormogonia, suggesting that these filaments might move using alternative mechanisms, which enhances our understanding of cell differentiation and the regulatory networks in multicellular cyanobacteria.

Article Abstract

Unlabelled: Multicellular cyanobacteria, like rely on septal junctions for cell-cell communication, which is crucial for coordinating various physiological processes including differentiation of N-fixing heterocysts, spore-like akinetes, and hormogonia-short, motile filaments important for dispersal. In this study, we functionally characterize a protein, encoded by gene Npun_F4142, which in a random mutagenesis approach, initially showed a motility-related function. The reconstructed Npun_F4142 knockout mutant exhibits further distinct phenotypic traits, including altered hormogonia formation with significant reduced motility, inability to differentiate heterocysts and filament fragmentation. For that reason, we named the protein FraI (fragmentation phenotype). The mutant displays severely impaired cell-cell communication, due to almost complete absence of the nanopore array in the septal cell wall, which is an essential part of the septal junctions. Despite lack of communication, hormogonia in the Δ mutant maintain motility and phototactic behavior, even though less pronounced than the wild type (WT). This suggests an alternative mechanism for coordinated movement beyond septal junctions. Our study underscores the significance of FraI in nanopore formation and cell differentiation, and provides additional evidence for the importance of septal junction formation and communication in various differentiation traits of cyanobacteria. The findings contribute to a deeper understanding of the regulatory networks governing multicellular cyanobacterial behavior, with implications for broader insights into microbial multicellularity.

Importance: The filament-forming cyanobacterium serves as a valuable model for studying cell differentiation, including the formation of nitrogen-fixing heterocysts and hormogonia. Hormogonia filaments play a crucial role in dispersal and plant colonization, providing a nitrogen source through atmospheric nitrogen fixation, thus holding promise for fertilizer-free agriculture. The coordination among the hormogonia cells enabling uniform movement toward the positive signal remains poorly understood. This study investigates the role of septal junction-mediated communication in hormogonia differentiation and motility, by studying a Δ mutant with significantly impaired communication. Surprisingly, impaired communication does not abolish synchronized filament movement, suggesting an alternative coordination mechanism. These findings deepen our understanding of cyanobacterial biology and have broader implications for multicellular behavior in prokaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351039PMC
http://dx.doi.org/10.1128/msphere.00510-24DOI Listing

Publication Analysis

Top Keywords

cell-cell communication
12
septal junctions
12
communication
8
communication differentiation
8
communication hormogonia
8
cell differentiation
8
impaired communication
8
differentiation
6
septal
6
hormogonia
6

Similar Publications

Introduction: Alzheimer's disease (AD), Dementia with Lewy bodies (DLB), and Parkinson's disease (PD) represent a spectrum of neurodegenerative disorders (NDDs). Here, we performed the first direct comparison of their transcriptomic landscapes.

Methods: We profiled the whole transcriptomes of NDD cortical tissue by snRNA-seq.

View Article and Find Full Text PDF

Comprehensive analysis of scRNA-seq and bulk RNA-seq reveals the non-cardiomyocytes heterogeneity and novel cell populations in dilated cardiomyopathy.

J Transl Med

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.

Background: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.

Methods: We constructed a single-cell transcriptional atlas of DCM and normal patients.

View Article and Find Full Text PDF

Visualization of Mechanical Force Regulation of Exosome Secretion Using High Time-Spatial Resolution Imaging.

Anal Chem

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.

Article Synopsis
  • Exosomes are small vesicles that help cells communicate and are influenced by the tumor environment, with mechanical forces potentially enhancing their release.
  • Researchers used advanced imaging techniques to study how mechanical forces affect exosome release in real time, observing that these forces lead to more exosome release through the fusion of multivesicular bodies with the cell membrane.
  • They identified that changes in the actin structure of cells, triggered by mechanical forces, are key to this process, paving the way for new strategies to address disease-related exosomes.
View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) show significant promise in treating immune diseases due to their ability to differentiate into various cell types and their immunomodulatory properties. However, the mechanisms by which MSCs regulate CD4T cells, essential for immune responses, are not yet fully understood. This study aims to provide a comprehensive overview of how MSCs and their secreted extracellular vesicles (EVs) modulate CD4T cells in immune diseases.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!