We identified MMV026468 as a picomolar inhibitor of blood-stage . Phenotyping assays, including isopentenyl diphosphate rescue of parasite growth inhibition, demonstrated that it targets MEP isoprenoid precursor biosynthesis. MMV026468-treated parasites showed an overall decrease in MEP pathway intermediates, which could result from inhibition of the first MEP enzyme DXS or steps prior to DXS such as regulation of the MEP pathway. Selection of MMV026468-resistant parasites lacking DXS mutations suggested that other targets are possible. The identification of MMV026468 could lead to a new class of antimalarial isoprenoid inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304725 | PMC |
http://dx.doi.org/10.1128/aac.01238-23 | DOI Listing |
Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Alzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer's disease (AD). The role of Lyn in TREM2-mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM-Purdue-TREAT-AD center to identify new type II Lyn inhibitors suitable as molecular probes.
View Article and Find Full Text PDFScience
December 2024
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Despite progress in designing protein-binding proteins, the shape matching of designs to targets is lower than in many native protein complexes, and design efforts have failed for the tumor necrosis factor receptor 1 (TNFR1) and other protein targets with relatively flat and polar surfaces. We hypothesized that free diffusion from random noise could generate shape-matched binders for challenging targets and tested this approach on TNFR1. We obtain designs with low picomolar affinity whose specificity can be completely switched to other family members using partial diffusion.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
Targeted covalent inhibition (TCI) and targeted protein degradation (TPD) have proven effective in pharmacologically addressing formerly 'undruggable' targets. Integration of both methodologies has resulted in the development of electrophilic degraders where recruitment of a suitable E3 ubiquitin ligase is achieved through formation of a covalent bond with a cysteine nucleophile. Expanding the scope of electrophilic degraders requires the development of electrophiles with tempered reactivity that enable selective ligase recruitment and reduce cross-reactivity with other cellular nucleophiles.
View Article and Find Full Text PDFFEBS Open Bio
December 2024
Vascular Biology Laboratory, AU-KBS Research Centre, Anna University, M.I.T. Campus, Chennai, India.
Over the past few decades, VEGF-targeted antiangiogenic therapy for cancers has gained increasing attention. Nevertheless, there are still several limitations such as the potential resistance mechanisms arising in cancer cells against these therapies and their potential adverse effects. These limitations highlight the need for novel anti-angiogenesis molecules and better understanding of the mechanisms of tumor angiogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!