Molecular ions that are generated by chemical reactions with trapped atomic ions can serve as an accessible testbed for developing molecular quantum technologies. On the other hand, they are also a hindrance to scaling up quantum computers based on atomic ions, as unavoidable reactions with background gases destroy the information carriers. Here, we investigate the single- and two-photon dissociation processes of single CaOH+ molecular ions co-trapped in Ca+ ion crystals using a femtosecond laser system. We report the photodissociation cross section spectra of CaOH+ for single-photon processes at λ = 245-275 nm and for two-photon processes at λ = 500-540 nm. Measurements are interpreted with quantum-chemical calculations, which predict the photodissociation threshold for CaOH+ → Ca+ + OH at 265 nm. This result can serve as a basis for dissociation-based spectroscopy for studying the internal structure of CaOH+. The result also gives a prescription for recycling Ca+ ions in large-scale trapped Ca+ quantum experiments from undesired CaOH+ ions formed in the presence of background water vapor.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0217685DOI Listing

Publication Analysis

Top Keywords

molecular ions
12
caoh+ molecular
8
atomic ions
8
ions
7
caoh+
6
photodissociation spectra
4
spectra single
4
single trapped
4
trapped caoh+
4
molecular
4

Similar Publications

Polymyxins, critical last-resort antibiotics, impact the distribution of membrane-bound divalent cations in the outer membrane of Gram-negative bacteria. We employed atomistic molecular dynamics simulations to model the effect of displacing these ions. Two polymyxin-sensitive and two polymyxin-resistant models of the outer membrane of were investigated.

View Article and Find Full Text PDF

Nine metal complexes formed by three symmetric β-diketonates (, acetylacetonate (), 1,1,1,3,3,3-hexafluoro-acetylacetonate (), and 2,2,6,6-tetramethylheptane-3,5-dionate ()) and three metal ions (with three different coordination geometries, , Be - tetrahedral, Cu - square planar, and Pb - "swing" square pyramidal) were investigated. The study combines structural analyses, vibrational spectroscopic techniques, and quantum chemical calculations with the aim of bridging crystal structure, electronic structure, molecular topology, and far-infrared (FIR) spectroscopic characteristics. The effect of intramolecular interactions on the structural, electronic, and spectroscopic features is the center of this study.

View Article and Find Full Text PDF

Metal ion transport in maize: survival in a variable stress environment.

J Genet Genomics

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Maize (Zea mays) is the most widely cultivated crop in the world. Maize production is closely linked to the extensive uptake and utilization of various mineral nutrients. Potassium (K), calcium (Ca), and magnesium (Mg) are essential metallic macronutrients for plant growth and development.

View Article and Find Full Text PDF

Effective pretreatment of tea stem via poly-deep eutectic solvent for promoting platform molecule production and obtaining fluorescent lignin.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:

In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.

View Article and Find Full Text PDF

A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!