Among the various hazardous substances, formaldehyde (HCHO), produced worldwide from wood furniture, dyeing auxiliaries, or as a preservative in consumer products, is harmful to human health. In this study, a sensitive room-temperature HCHO sensor, MTiNCs/Pd, has been developed by integrating Pd nanoclusters (PdNCs) into mesoporous MIL-125(Ti)-decorated TiO nanochannel arrays (TiNCs). Thanks to the enrichment effect of the mesoporous structure of MIL-125 and the large surface area offered by TiNCs, the resulting gas sensor accesses significantly enhanced HCHO adsorption capacity. The sufficient energetic active defects formed on PdNCs further allow an electron-extracting effect, thus effectively separating the photogenerated electrons and holes at the interface. The resulting HCHO sensor exhibits a short response/recovery time (37 s/12 s) and excellent sensitivity with a low limit of detection (4.51 ppb) under ultraviolet (UV) irradiation. More importantly, the cyclic redox reactions of Pd in PdNCs facilitated the regeneration of O(ads), thus ensuring a stable and excellent gas sensing performance even under a high-humidity environment. As a proof-of-principle of this design, a wearable gas sensing band is developed for the real-time and on-site detection of HCHO in cigarette smoke, with the potential as an independent device for environmental monitoring and other smart sensing systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c01120 | DOI Listing |
ACS Sens
January 2025
School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia.
Achieving sensors that can sensitively and selectively quantify levels of analytes in complex biofluids such as blood remains a significant challenge. To address this, we synthesized an array of isolated carbon nanochannels on a flat gold electrode that function as molecular sieves to prevent protein fouling and eliminate the need for antifouling layers. Utilizing a two-step pulsed technique, a reductive pulse expels negative interferences and fouling molecules followed by an oxidative pulse that oxidizes glucose at the bottom of the channel and on the gold surface.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
A new series of metal-organic nanotubes was constructed through one-dimensional assembly using molecular triangles or molecular squares composed of paddlewheel dirhodium complexes and bidentate axial ligands. The metal-organic nanotubes were significantly different from conventional solid metal-organic framework (MOF) motifs. They exhibit good solubility owing to the branched side chains at their periphery and demonstrate high orientation capabilities in thin films owing to their anisotropic structure.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Hybrid nanoplasmonic structures composed of subwavelength apertures in metallic films and nanoparticles have recently been demonstrated as ultrasensitive plasmonic sensors. This work investigates the electrokinetically driven propagation of the assembly mechanism of the metallic nanoparticles through nanoapertures. The Debye-Hückel approximation for a symmetric electrolyte solution with overlapping electrical double layers (EDLs) is used to obtain an analytical solution to the problem.
View Article and Find Full Text PDFSmall
December 2024
Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
A resistive switching device with precise control over the formation of conductive filaments (CF) holds immense potential for high-density memory arrays and atomic-scale in-memory computing architectures. While ion migration and electrochemical switching mechanisms are well understood, controlling the evolution of CF remains challenging for practical resistive random-access memory (RRAM) deployment. This study introduces a systematic approach to modulate oxygen vacancies (OV) in HfO films of Ag/HfO/Pt-based RRAM devices by controlling the substrate temperature.
View Article and Find Full Text PDFTalanta
November 2024
General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310014, China. Electronic address:
Sensitive detection of tumor biomarkers is of great significance for early cancer diagnosis, treatment evaluation, and recurrence monitoring. Development of convenient electrochemiluminescence (ECL) immunosensor using dissolved oxygen (O) as an endogenous co-reactant of luminol combined with efficient nanocatalysts to boost ECL signal in neutral media is highly desirable. Herein, sensitive detection of tumor biomarker using ECL of luminal-O enhanced by confinement of nitrogen-doped graphene quantum dots (N-GQDs) and platinum nanoparticles (PtNPs) on nanochannel array was demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!