Stretchable electronics have demonstrated excellent potential in wearable healthcare and conformal integration. Achieving the scalable fabrication of stretchable devices with high functional density is the cornerstone to enable the practical applications of stretchable electronics. Here, a comprehensive methodology for realizing large-scale, 3D, and stretchable circuits (3D-LSC) is reported. The soft copper-clad laminate (S-CCL) based on the "cast and cure" process facilitates patterning the planar interconnects with the scale beyond 1 m. With the ability to form through, buried and blind VIAs in the multilayer stack of S-CCLs, high functional density can be achieved by further creating vertical interconnects in stacked S-CCLs. The application of temporary bonding substrate effectively minimizes the misalignments caused by residual strain and thermal strain. 3D-LSC enables the batch production of stretchable skin patches based on five-layer stretchable circuits, which can serve as a miniaturized system for physiological signals monitoring with wireless power delivery. The fabrications of conformal antenna and stretchable light-emitting diode display further illustrate the potential of 3D-LSC in realizing large-scale stretchable devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202402221 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China.
Flexible sensors mimic the sensing ability of human skin, and have unique flexibility and adaptability, allowing users to interact with intelligent systems in a more natural and intimate way. To overcome the issues of low sensitivity and limited operating range of flexible strain sensors, this study presents a highly innovative preparation method to develop a conductive elastomeric sensor with a cracked thin film by combining polydimethylsiloxane (PDMS) with multiwalled carbon nanotubes (MCNT). This novel design significantly increases both the sensitivity and operating range of the sensor (strain range 0-50%; the maximum tensile sensitivity of this sensor reaches 4.
View Article and Find Full Text PDFACS Nano
December 2024
Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.
ACS Nano
December 2024
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Intrinsically stretchable electronics represent a significant advancement in wearable and implantable technologies, as they offer a unique advantage by maintaining intimate tissue contact while accommodating movements and size changes. This capability makes them exceptionally well-suited for applications in human-machine interfaces, wearables, and implantables, where seamless integration with the human body is essential. To realize this vision, it is important to develop soft integrated circuits for on-body signal processing and computing.
View Article and Find Full Text PDFAdv Healthc Mater
November 2024
Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA.
A Customized wound patch for Advanced tissue Regeneration with Electric field (CARE), featuring an autonomous robot arm printing system guided by a computer vision-enabled guidance system for fast image recognition is introduced. CARE addresses the growing demand for flexible, stretchable, and wireless adhesive bioelectronics tailored for electrotherapy, which is suitable for rapid adaptation to individual patients and practical implementation in a comfortable design. The visual guidance system integrating a 6-axis robot arm enables scans from multiple angles to provide a 3D map of complex and curved wounds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!