Contemporary tissue engineering efforts often seek to use mesenchymal stem cells (MSCs) due to their multi-potent potential and ability to generate a pro-regenerative secretome. While many have reported the influence of matrix environment on MSC osteogenic response, few have investigated the effects of donor and sex. Here, a well-defined mineralized collagen scaffold is used to study the influence of passage number and donor-reported sex on MSC proliferation and osteogenic potential. A library of bone marrow and adipose tissue-derived stem cells from eight donors to examine donor viability in osteogenic capacity in mineralized collagen scaffolds is obtained. MSCs displayed reduced proliferative capacity as a function of passage duration. Further, MSCs showed significant sex-associated variability in osteogenic capacity. Notably, MSCs from male donors displayed significantly higher cell proliferation while MSCs from female donors displayed significantly higher osteogenic response via increased alkaline phosphate activity, osteoprotegerin release, and mineral formation in vitro. The study highlights the essentiality of including donor-reported sex as an experimental variable and reporting culture expansion in future studies of biomaterial regenerative potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518655 | PMC |
http://dx.doi.org/10.1002/adhm.202400039 | DOI Listing |
Clin Oral Investig
January 2025
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria.
Objective: Titanium surface modifications improve osseointegration in dental and orthopedic implants. However, soft tissue cells can also reach the implant surface in immediate loading protocols. While previous research focused on osteogenic cells, the early response of soft tissue cells still needs to be better understood.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan.
Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.
View Article and Find Full Text PDFBone Res
January 2025
Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd.
Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Honghuagang District, Guizhou, China.
With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!