Ginsenosides in ginseng are known for their potential health benefits, including antioxidant properties and their potential to exhibit anticancer effects. Besides a various range of coding genes, ginsenosides impose their efficacy by targeting noncoding RNAs. Long noncoding RNA ( lncRNA) has gained significant attention from both basic and clinical oncology fields due to its involvement in various cancer cell activities such as proliferation, apoptosis, metastasis, and autophagy. These events can be achieved either by lncRNA alone or in association with microRNAs or proteins. This review aims to summarize the diverse activities of lncRNAs that are regulated by ginsenosides, focusing on their role in regulating target genes through signaling pathways in human diseases. We highlight the results of studies on the expression profiles of lncRNAs induced by ginsenosides in efforts to inhibit cancer cell proliferation. Finally, we discuss the potential and challenges of utilizing lncRNAs as diagnostic markers for disease treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258377PMC
http://dx.doi.org/10.1016/j.jgr.2024.04.002DOI Listing

Publication Analysis

Top Keywords

long noncoding
8
noncoding rnas
8
cancer cell
8
ginsenosides
5
human disease-related
4
disease-related long
4
rnas impact
4
impact ginsenosides
4
ginsenosides ginsenosides
4
ginsenosides ginseng
4

Similar Publications

Linking Long ncRNA to the Diagnosis, Pathogenesis, and Prognosis of Esophageal Cancer.

Dig Dis Sci

January 2025

Department of Gastroenterology and Hepatology, Loyola University Medical Center, 2160 S First Ave, Maywood, IL, 60153, USA.

Esophageal cancer is a common and often deadly malignancy, with treatment success depending largely on the stage at the time of diagnosis. Recently, studies have examined the role of non-coding RNAs in esophageal cancer pathogenesis, prognosis and therapy. This perspective specifically examines interactions long non-coding RNAs have with other RNA molecules in various facets of esophageal cancer.

View Article and Find Full Text PDF

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

Advances in CRISPR-Cas systems for kidney diseases.

Prog Mol Biol Transl Sci

January 2025

Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India. Electronic address:

Recent advances in CRISPR-Cas systems have revolutionised the study and treatment of kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and polycystic kidney disease (PKD). CRISPR-Cas technology offers precise and versatile tools for genetic modification in monogenic kidney disorders such as PKD and Alport syndrome. Recent advances in CRISPR technology have also shown promise in addressing other kidney diseases like AKI, CKD, and DKD.

View Article and Find Full Text PDF

Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. Despite the reliance of UBC therapy on definite pathological grading and classifications, the clinical response among patients varies widely. The molecular basis of this type of cancer appeals to considerable research; hence, new diagnostic and therapeutic options are introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!