Among terrestrial tetrapods, the origin of herbivory marked a key evolutionary event that allowed for the evolution of modern terrestrial ecosystems. A 100 Ma gap separates the oldest terrestrial tetrapods and the first undisputed herbivorous tetrapods. While four clades of early tetrapod herbivores are undisputed amniotes, the phylogenetic position of Diadectomorpha with respect to Amniota has long been controversial. Given that the origin of herbivory coincides with the oldest amniotes, and obligate herbivory is unknown within amphibians, this suggests that a key adaptation necessary to evolve obligate herbivory is unique to amniotes. Historically, phylogenetic analyses have found Diadectomorpha as the sister-group to amniotes, but recent analyses recover Diadectomorpha as sister-group to Synapsida, within Amniota. We tested whether diadectomorphs are amniotes by updating the most recent character-taxon matrix. Specifically, we added new characters from the lower jaw and added diadectomorph taxa, resulting in a dataset of 341 characters and 61 operational taxonomic units. We updated the description of five diadectomorph jaws using microcomputed tomography data. Our majority-rule consensus places Diadectomorpha as sister-group to Synapsida; other methods do not recover this relationship. We revise diadectomorph taxonomy, erecting a new species from the early Permian Bromacker locality, Germany, and a new genus to accommodate '.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257076PMC
http://dx.doi.org/10.1098/rsos.231566DOI Listing

Publication Analysis

Top Keywords

diadectomorpha sister-group
12
terrestrial tetrapods
8
origin herbivory
8
obligate herbivory
8
sister-group synapsida
8
diadectomorpha
5
herbivory
5
amniotes
5
comprehensive phylogeny
4
phylogeny revised
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!