AI Article Synopsis

  • * CAFs from osimertinib-resistant LUAD tissues produce higher levels of colony-stimulating factor 2 (CSF2), which activates the JAK2/STAT3 signaling pathway and enhances the expression of the lnc-CSRNP3 gene in LUAD cells.
  • * The study indicates that CAF-derived CSF2 contributes to osimertinib resistance by increasing ribosome biogenesis and suggests targeting the CSF2 pathway may improve treatment effectiveness in resistant LUAD

Article Abstract

Acquired resistance is a major obstacle to the therapeutic efficacy of osimertinib in lung adenocarcinoma (LUAD), but the underlying mechanisms are still not fully understood. Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell type in LUAD tumor-microenvironment (TME) and have emerged as a key player in chemoresistance. However, the function of CAFs in osimertinib resistance is still unclear. Here, we showed that CAFs derived from osimertinib-resistant LUAD tissues (CAF) produced much more colony-stimulating factor 2 (CSF2) than those isolated from osimertinib-sensitive tissues. CAF-derived CSF2 activated the Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) signaling pathway and upregulated lnc-CSRNP3 in LUAD cells. Lnc-CSRNP3 then promoted the expression of nearby gene by recruiting chromodomain helicase DNA binding protein 9 (CHD9) and inhibited the phosphatase activity of the serine/threonine protein phosphatase 1 catalytic subunit α (PP1α), thereby induced osimertinib resistance by enhancing ribosome biogenesis. Collectively, our study reveals a critical role for CAFs in the development of osimertinib resistance and identifies the CSF2 pathway as an attractive target for monitoring osimertinib efficacy and overcoming osimertinib resistance in LUAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260172PMC
http://dx.doi.org/10.1002/mco2.653DOI Listing

Publication Analysis

Top Keywords

osimertinib resistance
20
colony-stimulating factor
8
lung adenocarcinoma
8
osimertinib
7
resistance
6
luad
5
cancer-associated fibroblast-derived
4
fibroblast-derived colony-stimulating
4
factor confers
4
confers acquired
4

Similar Publications

Background: Osimertinib is the standard first-line treatment for advanced epidermal growth factor receptor (EGFR)-mutated NSCLC. However, treatment resistance is inevitable and increased c-Met protein expression correlates with resistance. Telisotuzumab vedotin (Teliso-V) is an antibody-drug conjugate that targets c-Met protein overexpression.

View Article and Find Full Text PDF

Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is the main cause of mortality in lung cancer. This study aimed to investigate the roles of neuropilin 1 (NRP1) in non-small cell lung cancer (NSCLC). NRP1 expression was assessed in tumor tissues from patients with osimertinib-resistant (OR) NSCLC and osimertinib-responsive NSCLC as well as in patients with paracancerous NSCLC tissues who did not undergo radiotherapy or chemotherapy.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) effectively treat EGFR-mutant lung adenocarcinoma, demonstrating initial efficacy but eventually leading to acquired resistance. Small cell transformation is a rare resistance mechanism to EGFR-TKIs in lung adenocarcinoma, which can complicate clinical diagnosis and treatment. We present a patient with lung adenocarcinoma who underwent a prior pneumonectomy and adjuvant chemotherapy and was treated with osimertinib after the recurrence of lung cancer.

View Article and Find Full Text PDF

The impact of clinical stage on the effectiveness of osimertinib for epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) remains unexamined. We investigated osimertinib therapeutic efficacy variation between stage IVA or lower and stage IVB EGFR mutation-positive lung cancers, focusing on differences in pretreatment co-occurring genetic alterations in circulating tumor DNA. This was a secondary analysis of the ELUCIDATOR study, a multicenter prospective observational study in Japan that assessed the mechanisms underlying resistance to osimertinib as a first-line treatment for advanced NSCLC with EGFR mutations.

View Article and Find Full Text PDF

Background: Osimertinib has emerged as a critical element in the treatment landscape following recent clinical trials. Further investigation into the mechanisms driving resistance to Osimertinib is necessary to address the restricted treatment options and survival advantages that are compromised by resistance in patients with EGFR-mutated lung adenocarcinoma (LUAD).

Methods: Spatial transcriptomic and proteomic analyses were utilized to investigate the mechanisms of Osimertinib resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!