Background: Gestational intermittent hypoxia (GIH), a hallmark of maternal obstructive sleep apnea, sex-differentially causes hypertension and endothelial dysfunction in adult male offspring but not in females. This study investigated whether the GIH-exposed female offspring, a "protected" group against the hypertensive effects of maternal GIH exposure, exhibit increased susceptibility to hypertension and cardiovascular dysfunction when fed a high-fat high-sucrose (HFHS) diet and whether this effect could be reversed by pharmacological intervention activating the angiotensin II type 2 receptor (ATR).
Methods: Female offspring of control and GIH-exposed (10.5% O, 8 h/d, E10-21) dams were assigned either an HFHS diet or a standard diet from 12 weeks of age. Blood pressure was monitored. At 28 weeks, a systemic CGP42112 (ATR agonist) or saline infusion was administered through the osmotic pump. At 30 weeks, the heart was weighed and collected for H&E staining, mesenteric arteries for vascular reactivity assessment and protein analysis, and plasma for ELISA.
Results: The HFHS diet induced similar increases in body weight gain and blood pressure in control and GIH female offspring. HFHS feeding did not affect heart structure, but impaired endothelial-dependent vascular relaxation with associated decreased ATR and eNOS expression and reduced plasma bradykinin levels in both control and GIH offspring. CGP42112 administration effectively mitigated HFHS-induced hypertension and endothelial dysfunction only in control offspring, accompanied by restored ATR, eNOS, and bradykinin levels, but not in the GIH counterparts.
Conclusion: These findings suggest that GIH induces endothelial dysfunction and ATR insensitivity in female offspring exposed to an HFHS diet.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259025 | PMC |
http://dx.doi.org/10.26502/jbb.2642-91280150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!