The outcome of cell signaling depends not only on signal strength but also on temporal progression. We use Fluorescence Lifetime Imaging of Resonance Energy Transfer (FLIM/FRET) biosensors to investigate intracellular signaling dynamics. We examined the β1 receptor-G-cAMP signaling axis using both widefield frequency domain FLIM (fdFLIM) and fast confocal time-correlated single photon counting (TCSPC) setups. Unexpectedly, we observed that fdFLIM revealed transient cAMP responses in HeLa and Cos7 cells, contrasting with sustained responses as detected with TCSPC. Investigation revealed no light-induced effects on cAMP generation or breakdown. Rather, folic acid present in the imaging medium appeared to be the culprit, as its excitation with blue light sensitized degradation of β1 agonists. Our findings highlight the impact of subtle phototoxicity on experimental outcomes, advocating confocal TCSPC for reliable analysis of response kinetics and stressing the need for full disclosure of chemical formulations by scientific vendors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257777PMC
http://dx.doi.org/10.1016/j.isci.2024.110268DOI Listing

Publication Analysis

Top Keywords

cell signaling
8
signaling dynamics
8
"radical" differences
4
differences flim
4
flim microscopes
4
microscopes affect
4
affect interpretation
4
interpretation cell
4
signaling
4
dynamics outcome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!