Polymer/inorganic nanocomposite pour point depressant (PPD) is a research hotspot in the field of waxy crude oil pipelining. However, the inorganic nanoparticles need to be organically modified to improve their organic compatibility, and the inorganic nanoparticles are harmful to crude oil refining. In this work, organic PSMS with an average size of 1.4 μm was first synthesized by dispersion polymerization. Then, a new type of EVA/PSMS composite PPD was prepared by melt blending. The effects of the PSMS, EVA PPD, and composite PPD on the pour point, rheological properties, and wax precipitating properties of a specific waxy crude oil were investigated. It was found that adding 50-200 ppm of PSMS alone slightly improves the crude oil rheology through a spatial hindrance effect, while adding 20 ppm of EVA PPD greatly improves the crude oil rheology by modifying the wax crystal morphology. Compared with EVA PPD, adding 20 ppm composite PPD improves the crude oil rheology further, and the rheological improving ability first enhances and then weakens with increasing the PSMS content in the composite PPD (0-10 wt %). At the PSMS content in the composite PPD 5 wt %, the EVA/PSMS 5% composite PPD makes the wax crystal aggregates more compact, thus showing the strongest rheological improving ability. The EVA molecules could adsorb on the PSMS and form the composite particles, which further regulate the wax crystal morphology and then improve the crude oil rheology further.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256350 | PMC |
http://dx.doi.org/10.1021/acsomega.4c03728 | DOI Listing |
Nanomicro Lett
January 2025
State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
Seawater electrolysis offers a promising pathway to generate green hydrogen, which is crucial for the net-zero emission targets. Indirect seawater electrolysis is severely limited by high energy demands and system complexity, while the direct seawater electrolysis bypasses pre-treatment, offering a simpler and more cost-effective solution. However, the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis's efficiency.
View Article and Find Full Text PDFChem Rec
January 2025
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
In recent times, chemical looping offered a sustainable alternative for upgrading light hydrocarbons into olefins. Olefins are valuable platform chemicals that are utilized for diverse applications. To close the wide shortfall in their global supply, intensified efforts are ongoing to develop on-purpose production technologies.
View Article and Find Full Text PDFFront Bioinform
January 2025
Department of Law, Economics and Social Sciences, University Magna Græcia, Catanzaro, Italy.
Heliyon
January 2025
Department of Petroleum Engineering, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Purpose: Biodiesel is a non-toxic, renewable, and environmentally friendly fuel used in compression ignition engines. This work aimed to develop FeO/SiO as a cheap, magnetic, and easy separable catalyst for biodiesel production from waste oil by sono-catalytic transesterification.
Methods: Fe₃O₄-SiO₂ was prepared using a modified Stober method and used as a heterogeneous catalyst in an ultrasound-assisted transesterification reaction to produce biodiesel.
Small Methods
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
Optoelectronic synapse devices (OESDs) inspired by human visual systems enable to integration of light sensing, memory, and computing functions, greatly promoting the development of in-sensor computing techniques. Herein, dual-mode integration of bipolar response photodetectors (PDs) and artificial optoelectronic synapses based on ZnO/SnSe heterojunctions are presented. The function of the fabricated device can be converted between the PDs and OESDs by modulating the light intensity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!