Hydroxyapatite can combine with polysaccharide originating biomaterials with special applications in the biomedical field. In this review, the synthesis of (nano)composites is discussed, focusing on natural polysaccharides such as alginate, chitosan, and pectin. In this way, advances in recent years in the development of preparing materials are revised and discussed. Therefore, an overview of the recent synthesis and applications of polyssacharides@hydroxyapatites is presented. Several studies based on chitosan@hydroxyapatite combined with other inorganic matrices are highlighted, while pectin@hydroxyapatite is present in a smaller number of reports. Biomedical applications as drug carriers, adsorbents, and bone implants are discussed, combining their dependence with the nature of interactions on the molecular scale and the type of polysaccharides used, which is a relevant aspect to be explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256335PMC
http://dx.doi.org/10.1021/acsomega.4c02170DOI Listing

Publication Analysis

Top Keywords

biomedical applications
8
polysaccharide hydroxyapatite
4
hydroxyapatite nanocomposites
4
nanocomposites biomedical
4
applications
4
applications overview
4
overview years
4
years hydroxyapatite
4
hydroxyapatite combine
4
combine polysaccharide
4

Similar Publications

Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.

View Article and Find Full Text PDF

Deep cascaded registration and weakly-supervised segmentation of fetal brain MRI.

Heliyon

January 2025

BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Deformable image registration is a cornerstone of many medical image analysis applications, particularly in the context of fetal brain magnetic resonance imaging (MRI), where precise registration is essential for studying the rapidly evolving fetal brain during pregnancy and potentially identifying neurodevelopmental abnormalities. While deep learning has become the leading approach for medical image registration, traditional convolutional neural networks (CNNs) often fall short in capturing fine image details due to their bias toward low spatial frequencies. To address this challenge, we introduce a deep learning registration framework comprising multiple cascaded convolutional networks.

View Article and Find Full Text PDF

Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features.

View Article and Find Full Text PDF

Deep-UV microscopy enables high-resolution, label-free molecular imaging by leveraging biomolecular absorption properties in the UV spectrum. Recent advances in UV-imaging hardware have renewed interest in this technique for quantitative live cell imaging applications. However, UV-induced photodamage remains a concern for longitudinal dynamic imaging studies.

View Article and Find Full Text PDF

Spectrally encoded flow cytometry using few-mode fiber collection.

Biomed Opt Express

January 2025

Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

In fiber-based confocal microscopy, using two separate fibers for illumination and collection enables the use of a few-mode fiber to achieve an effect similar to opening the pinhole in a conventional confocal microscope. In some Fourier-domain applications, however, or when a spectral measurement is involved, the coherent light detection would lead to noticeable spectral modulation artifacts that result from differential mode delay, an effect caused by the multimode propagation in the collection fiber. After eliminating these artifacts by using mode-dependent polarization control, we demonstrate effective spectrally encoded imaging with improved signal efficiency and lower speckle noise, and only a minor, negligible reduction in lateral and axial resolutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!