Low-salinity water injection (LSWI) is a recently emerged and promising technique to enhance oil recovery. In addition, it is attractive due to its relatively low-cost, environmental friendliness, and sustainability. However, the underlying mechanisms remain unclear, and very limited research has been conducted on heavy oil. To verify the feasibility of injecting a low-salinity aquifer water (LSAW) to improve the oil recovery of our target offshore heavy oil reservoir, first, a series of experiments on the core scale, including coreflooding and spontaneous imbibition experiments, were carried out. Furthermore, atomic force microscopy (AFM), contact angle, zeta potential measurement, as well as disjoining pressure calculations based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory were carried out to explore the underlying governing mechanism at the microscopic scale. The secondary oil recovery factors of the coreflood tests are 67.11, 70.55, and 77.18% for seawater (SW), produced water (PW), and LSAW, respectively. The additional oil recoveries by LSAW when injected in tertiary modes are 6.38% after SW injection and 5.68% after PW injection. These results indicate that compared with SW and PW which have high brine salinity, the low-salinity brine from the subsurface aquifer (LSAW) can improve oil recovery in both secondary and tertiary modes. In addition, the oil recovery factors from the spontaneous imbibition tests (27.52% by LSAW, 17.32% by PW, and 14.00% by SW) and the insignificant variation of IFTs among the three brines lead to the anticipation that the LSAW can alter the rock to a more water-wet condition compared with SW and PW, thereby giving rise to a higher oil recovery factor in the coreflooding tests. By using AFM imaging and contact angle tests, we proved that the polar asphaltene could desorb from the rock surface and consequently reduce the water contact angle substantially when subjected to low-salinity brine. Furthermore, the zeta potential and the disjoining pressure results indicate that a more repulsive force was developed between oil and the rock under the low-salinity environment, which thereby promotes asphaltene desorption and consequent wettability alteration. Our work has paved the way to apply LSWI to the offshore heavy oil sandstone reservoir.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256099PMC
http://dx.doi.org/10.1021/acsomega.4c03155DOI Listing

Publication Analysis

Top Keywords

oil recovery
28
heavy oil
16
oil
13
contact angle
12
oil sandstone
8
sandstone reservoir
8
water lsaw
8
lsaw improve
8
improve oil
8
offshore heavy
8

Similar Publications

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Characterisation and anaerobic digestion of fat, oil and grease (FOG) waste from wastewater treatment plants.

J Environ Manage

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.

The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.

View Article and Find Full Text PDF

α-Terpineol and 1,8-cineole are two important compounds in essential oils. This study developed an efficient method to recover α-terpineol from model oil (MO) based on association extraction by in situ formations of deep eutectic solvent (DES) between α-terpineol and some quaternary ammonium salts (QASs) by hydrogen-bond (HB) interaction. Such interaction could be broken almost completely by the introduction of water, due to the stronger HB interaction between water and QASs, which could release α-terpineol by liquid-liquid separation and save the organic solvents consumption.

View Article and Find Full Text PDF

Direct Hot Solid-Liquid Extraction (DH-SLE): A High-Yield Greener Technique for Lipid Recovery from Coffee Beans.

Plants (Basel)

January 2025

Departamento de Química, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, MG, Brazil.

Soxhlet extraction is a method recommended by the Association of Official Analytical Chemists (AOAC) to determine the lipid content in plant samples. Generally, n-hexane (toxicity grade 5) is used as the solvent (≈300 mL; ≈30 g sample) at boiling temperatures (69 °C) for long times (≤16 h) under a chilled water reflux (≈90 L/h), proportionally aggravated by the number of repetitions and samples determined. In this sense, the technique is neither safe nor sustainable for the analyst or the environment.

View Article and Find Full Text PDF

The Bohai oilfield is characterized by severe heterogeneity and high average permeability, leading to a low water flooding recovery efficiency. Polymer flooding only works for a certain heterogeneous reservoir. Therefore, supplementary technologies for further enlarging the swept volume are still necessary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!