A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Damage Self-Healing Property of Dissolved Salt Columns in Solid Potash Mine. | LitMetric

Damage Self-Healing Property of Dissolved Salt Columns in Solid Potash Mine.

ACS Omega

Key Laboratory of Green Utilization of Key Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Published: July 2024

The objective of this work was to investigate the self-healing properties and mechanical damage characteristics of dissolved salt columns under different humidity and time conditions. Based on the results of electron microscope scanning and uniaxial mechanical tests, the microscopic element distribution of the ore and the microscopic morphology of the minerals were investigated, and the healing, mechanical, and damage properties of the specimens were analyzed, which revealed the microscopic reinforcement mechanism of the damage healing of the dissolved salt columns. The results showed that the healing reinforcement, compressive strength, and modulus of elasticity of dissolved salt columns under uniaxial compression show a tendency to increase, then decrease with the increase of humidity, and gradually increase with the increase of the maintenance time and reach the maximum value at 10% humidity and 30 days of maintenance time, which are 3.48, 8.07, and 650 MPa, respectively. The damage type of the healed specimen as a whole gradually transitioned from tensile damage to shear-slip type, indicating that the brittle damage characteristics of the specimen under loading became more and more significant. Based on the principle of strain equivalence, the damage evolution equation under uniaxial compression of solid potash dissolved salt columns describes the damage evolution law and destruction process of the specimen, and the results of the damage characterization of the dissolved salt columns are consistent with the change rule of the healing properties and mechanical properties with humidity and conservation time. Based on the fine morphological features of the dissolved salt column specimens after self-healing, three different self-healing microscopic mechanisms for damage recovery of solid potash dissolved salt columns are summarized, namely, healing of damaged microcracks based on diffusion, recrystallization healing of brine-filled microfractures, and healing adhesion of crystal particles in dissolved zones. These microstructures effectively transform cracks into isolated sections and play a key role in improving mechanical properties. In addition, the higher the humidity, the thicker adsorbed water film is produced on the fissure surface, which accelerates the transportation of materials on the fissure surface, and the healing rate of the dissolved salt columns increases. However, when the humidity is too high, it causes the evaporation of the liquid film to be less than the recharge of water vapor, which reduces the healing rate of the dissolved salt columns. Thus, suitable humidity produces a more pronounced healing effect than an environment maintained at a constant high humidity level. The research results can provide theoretical guidance for the filling mining of solid potassium salt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256878PMC
http://dx.doi.org/10.1021/acsomega.4c04561DOI Listing

Publication Analysis

Top Keywords

dissolved salt
40
salt columns
36
solid potash
12
damage
11
dissolved
11
salt
11
healing
10
columns
9
properties mechanical
8
mechanical damage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!