Microgels are spherical hydrogels with physicochemical properties ideal for many biomedical applications. For example, microgels can be used as individual carriers for suspension cell culture or jammed/annealed into granular hydrogels with micron-scale pores highly permissive to molecular transport and cell proliferation/migration. Conventionally, laborious optimization processes are often needed to create microgels with different moduli, sizes, and compositions. This work presents a new microgel and granular hydrogel preparation workflow using gelatin-norbornene-carbohydrazide (GelNB-CH). As a gelatin-derived macromer, GelNB-CH presents cell adhesive and degradable motifs while being amenable to three orthogonal click chemistries, namely the thiol-norbornene photo-click reaction, hydrazone bonding, and the inverse electron demand Diels-Alder (iEDDA) click reaction. The thiol-norbornene photo-click reaction (with thiol-bearing crosslinkers) and hydrazone bonding (with aldehyde-bearing crosslinkers) were used to crosslink the microgels and to realize on-demand microgel stiffening, respectively. The tetrazine-norbornene iEDDA click reaction (with tetrazine-bearing crosslinkers) was used to anneal microgels into granular hydrogels. In addition to materials development, we demonstrated the value of the triple-click chemistry granular hydrogels culturing human mesenchymal stem cells and pancreatic cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255916PMC
http://dx.doi.org/10.1039/d3lp00249gDOI Listing

Publication Analysis

Top Keywords

granular hydrogels
12
thiol-norbornene photo-click
8
photo-click reaction
8
hydrazone bonding
8
iedda click
8
click reaction
8
microgels
6
triple click
4
click chemistry
4
chemistry crosslinking
4

Similar Publications

Gellan gum-based granular gels as suspension media for biofabrication.

PLoS One

November 2024

Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom.

Article Synopsis
  • Engineering 3D tissue-like structures is challenging in regenerative medicine, but new self-healing, viscoplastic fluids help with this by allowing easier printing of bioinks.
  • Researchers developed gellan gum granular gels that can be used as suspension media for 3D bioprinting, demonstrating effective printing at various temperatures and with low yield stresses.
  • The study shows that these gels support cell-laden droplet printing for over a week and can create hydrogel features, highlighting their advantages in biofabrication due to their ease of use, speed, and ability to crosslink.
View Article and Find Full Text PDF

Advancing three-dimensional (3D) tissue constructs is central to creating models and engineered tissues that recapitulate biology. Materials that are permissive to cellular behaviors, including proliferation, morphogenesis of multicellular structures, and motility, will support the emergence of tissue structures. Granular hydrogels in which there is no interparticle cross-linking exhibit dynamic properties that may be permissive to such cellular behaviors.

View Article and Find Full Text PDF

The interplay between biomaterials and host immune responses critically determines outcomes in tissue restoration. Recent studies suggest that physicochemical properties of materials can dictate pro-regenerative versus pro-fibrotic responses and have begun to define the key immune cell types and signals governing these divergent effects. This emerging understanding enables the engineering of regenerative biomaterials capable of functional restoration in situ.

View Article and Find Full Text PDF

We report an instantaneous room-temperature phase separation of 1 mM bovine serum albumin solution in the presence of (20% acetic acid+0.2 M NaCl), a routinely used food preservative; an opaque liquid-like phase (L) coexists in equilibrium with a granular gel like phase (G). Interestingly, neither 20% acetic acid nor 0.

View Article and Find Full Text PDF

Direct ink writing (DIW) enables 3D printing of macroscopic objects with well-defined structures and compositions that controllably change over length scales of order 100 µm. Unfortunately, only a limited number of materials can be processed through DIW because it imparts stringent rheological requirements on inks. This limitation can be overcome for soft materials, if they are formulated as microparticles that, if jammed, fulfill the rheological requirements to be printed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!