The effect of redox bacteria on the programmed cell death-1 cancer immunotherapy.

Res Pharm Sci

Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Published: April 2024

Background And Purpose: Extracellular electron transferring (EET) or redox bacteria employ a shuttle of flavins to transfer electrons to the oxygen in the intestinal mucosa. Although clinical studies suggest that the gut microbiome modulates the efficiency of immune checkpoint therapy in patients with cancer, the modulation mechanisms have not been well-characterized yet.

Experimental Approach: In the present study, the oral gavage administration of MR-1 as a prototypic EET bacteria was assayed in a mouse model of lung cancer to determine the effect of EET bacterium on the efficacy of the programmed cell death protein 1 (PD1)-immune checkpoint therapy.

Findings/results: It was indicated that EET from was mediated by riboflavins that were supplied through extrinsic sources. Co-administration of and anti-PD 1 antibodies represent better tumor remission compared to the single-administration of each one; however, no statistically significant change was observed in the tumor volume.

Conclusion And Implications: More detailed studies are needed to definitively confirm the therapeutic effects of electrogenic bacteria in patients with cancer. Given the findings of the present study, increasing flavin compounds or EET bacteria in the intestine may provide novel strategies for modulating cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257211PMC
http://dx.doi.org/10.4103/RPS.RPS_28_23DOI Listing

Publication Analysis

Top Keywords

redox bacteria
8
programmed cell
8
cancer immunotherapy
8
patients cancer
8
eet bacteria
8
cancer
5
eet
5
bacteria programmed
4
cell death-1
4
death-1 cancer
4

Similar Publications

Global oxygen minimum zones (OMZs) often reach hypoxia but seldom reach anoxia. Recently it was reported that Michaelis Menten constants (K) of oxidative enzymes are orders of magnitude higher than respiratory K values, and in the Hypoxic Barrier Hypothesis it was proposed that, in ecosystems experiencing falling oxygen, oxygenase enzyme activities become oxygen-limited long before respiration. We conducted a mesocosm experiment with a phytoplankton bloom as an organic carbon source and controlled dissolved oxygen (DO) concentrations in the dark to determine whether hypoxia slows carbon oxidation and oxygen decline.

View Article and Find Full Text PDF

New insights into chitosan-Ag nanocomposites synthesis: Physicochemical aspects of formation, structure-bioactivity relationship and mechanism of antioxidant activity.

Int J Biol Macromol

January 2025

Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea. Electronic address:

Herein, a novel approach to the controlled formation of chitosan-Ag nanocomposites (NCs) with different structures and tunable chemical/biological properties was proposed. The chitosan-Ag NCs were obtained using hydrothermal synthesis and varying the concentrations of components. The hypothesis of chitosan-Ag NC synthesis using polysaccharide coils as a "microreactor" system was confirmed.

View Article and Find Full Text PDF

The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism.

View Article and Find Full Text PDF

Alternative oxidase (AOX) regulates the level of reactive oxygen species and nitric oxide (NO) in plants. While under normoxic conditions it alleviates NO formation, there are several indications that in the conditions of low oxygen such as during seed germination before radicle protrusion, in meristematic stem cells, and in flooded roots AOX can be involved in the production of NO from nitrite. Whereas the first reports considered this role as indirect, more evidence is accumulated that AOX can act as a nitrite: NO reductase.

View Article and Find Full Text PDF

Simultaneous Activation of Beta-Oxidation and De Novo Lipogenesis in MASLD-HCC: A New Paradigm.

Liver Int

February 2025

Department of Digestive and Hepatobiliary Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of hepatocellular carcinoma (HCC). In this study, we combine metabolomic and gene expression analysis to compare HCC tissues with non-tumoural tissues (NTT).

Methods: A non-targeted metabolomic strategy LC-MS was applied to 52 pairs of human MASLD-HCC and NTT separated into 2 groups according to fibrosis severity F0F1-F2 versus F3F4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!