Plasma concentrations of peptide hormones: Unrealistic levels of vasopressin (AVP), oxytocin (OXT), and brain natriuretic peptide (BNP).

Acta Physiol (Oxf)

Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.

Published: September 2024

Hormones are specific molecules measured in biological fluids by elaborate analytical systems requiring meticulous attention. Variation between laboratories can be expected. However, recently published measurements of AVP, OXT, and BNP in human plasma under basal/control conditions include numbers which, between publications, vary by 100-10 000-fold. Generally, the methods descriptions are scant, at best, and provide no information about quality control measures. Clearly, two results describing the same basal hormone concentration by numbers three orders of magnitude apart are incongruent providing reason for concern. Basal concentrations of bioactive AVP, OXT, and BNP in human plasma are in the order of 1-10 pmol/L. Therefore, assay systems applied to plasma must be able to measure concentrations of less than 1 pmol/L with appropriate specificity and accuracy. Basal concentrations of AVP, OXT, and BNP above 100 pmol/L should be reconsidered, as such results do not reflect bioactive hormone levels in humans, rats, or mice. Any concentration above 1000 pmol/L is of concern because such levels of bioactive hormone may be seen only under extreme conditions, if at all.

Download full-text PDF

Source
http://dx.doi.org/10.1111/apha.14200DOI Listing

Publication Analysis

Top Keywords

avp oxt
12
oxt bnp
12
bnp human
8
human plasma
8
basal concentrations
8
bioactive hormone
8
plasma
4
plasma concentrations
4
concentrations peptide
4
peptide hormones
4

Similar Publications

Hormonal mechanisms in the paraventricular nuclei associated with hyperalgesia in Parkinson's disease model rats.

Biochem Biophys Res Commun

January 2025

Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. Electronic address:

Pain is a major non-motor symptom of Parkinson's disease (PD). The relationship between hyperalgesia and neuropeptides originating from paraventricular nucleus (PVN) in 6-hydroxydopamine (6-OHDA) rats has already been investigated for oxytocin (OXT), but not yet for arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH). The present study aimed to investigate the alterations in these neuropeptides following nociceptive stimulation in PD model rats and to examine the mechanisms of hyperalgesia.

View Article and Find Full Text PDF

Purpose: Transient arginine vasopressin deficiency (AVP-D), previously called diabetes insipidus, is a well-known complication of transsphenoidal pituitary surgery (TPS) with no definite predictive biomarker to date making it difficult to anticipate. While oxytocin (OXT) was previously suggested as a possible biomarker to predict syndrome of inappropriate diuresis (SIAD)-related hyponatraemia after TPS, its secretion in patients presenting with AVP-D remains poorly understood. We therefore hypothesized that OXT might present a different secretion in the case of AVP-D which would support its potential as an early biomarker of AVP-D.

View Article and Find Full Text PDF

The hypothalamic-pituitary-adrenal (HPA) axis in mammals and the hypothalamic-pituitary-interrenal (HPI) axis in fish are open systems that adapt to the environment during development. Little is known about how this adaptation begins and regulates early stress responses. We used larval zebrafish to examine the impact of prolonged forced swimming at 5 days post-fertilization (dpf), termed early-life challenge (ELC), on cortisol responses, neuropeptide expression in the nucleus preopticus (NPO), and gene transcript levels.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the symptoms of social signal processing in Prader-Willi Syndrome (PWS) can be influenced by neuropeptides oxytocin (OXT) and vasopressin (AVP), particularly focusing on their effects in the lateral septum (LS) of the brain.
  • It uses a mouse model with a knockout of the Magel2 gene, employing various experimental techniques to observe the role of OXT and AVP in social-fear situations and identify neuronal pathways involved.
  • The findings reveal that deficits in OXT and AVP signaling lead to disrupted social-fear responses by affecting certain inhibitory neurons in the LS, providing insights that could pave the way for new treatment strategies for autism spectrum disorders.
View Article and Find Full Text PDF

Ethanol withdrawal sensitivity is a risk factor for the development of alcohol use disorder. Heavy episodic drinking during adolescence often encompasses repeated periods of withdrawal. Adolescent intermittent ethanol exposure of laboratory rodents produces several neurobiological deficits that differ between sexes, but the sensitivity to withdrawal as a contributor to the observed sex differences is not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!