An ensemble variational quantum algorithm for non-Markovian quantum dynamics.

Phys Chem Chem Phys

Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, USA.

Published: July 2024

Many physical and chemical processes in a condensed phase environment exhibit non-Markovian quantum dynamics. As such simulations are challenging on classical computers, we developed a variational quantum algorithm that is capable of simulating non-Markovian dynamics on noisy intermediate-scale quantum (NISQ) devices. We used a quantum system linearly coupled to its harmonic bath as the model Hamiltonian. The non-Markovianity is captured by introducing auxiliary variables from the bath trajectories. With Monte Carlo sampling of the bath degrees of freedom, finite temperature dynamics is produced. We validated the algorithm on a simulator and demonstrated its performance on an IBM quantum device. The framework developed naturally adapts to any anharmonic bath with non-linear coupling to the system, and is also well suited for simulating spin chain dynamics in a dissipative environment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp01669fDOI Listing

Publication Analysis

Top Keywords

variational quantum
8
quantum algorithm
8
non-markovian quantum
8
quantum dynamics
8
quantum
7
dynamics
5
ensemble variational
4
algorithm non-markovian
4
dynamics physical
4
physical chemical
4

Similar Publications

Criegee intermediates (CIs) are potentially significant oxidants and a major source of OH radicals in the troposphere. The -CHCHOO intermediate has been confirmed as a crucial component of CIs in the atmospheric environment. Although previous studies have provided some experimental and theoretical rate constants, inconsistencies among these data remain, and the experimental data do not cover the full range of temperatures present in the troposphere.

View Article and Find Full Text PDF

We developed a general framework for hybrid quantum-classical computing of molecular and periodic embedding approaches based on an orbital space separation of the fragment and environment degrees of freedom. We demonstrate its potential by presenting a specific implementation of periodic range-separated DFT coupled to a quantum circuit ansatz, whereby the variational quantum eigensolver and the quantum equation-of-motion algorithm are used to obtain the low-lying spectrum of the embedded fragment Hamiltonian. The application of this scheme to study localized electronic states in materials is showcased through the accurate prediction of the optical properties of the neutral oxygen vacancy in magnesium oxide (MgO).

View Article and Find Full Text PDF

We derive the transition rates, dephasing rates, and Lamb shifts for a system consisting of many molecules collectively coupled to a resonant cavity mode. Using a variational polaron master equation, we show that strong vibrational interactions inherent to molecules give rise to multi-phonon processes and suppress the light-matter coupling. In the strong light-matter coupling limit, multiphonon contributions to the transition and dephasing rates strongly dominate over single-phonon contributions for typical molecular parameters.

View Article and Find Full Text PDF

Recent developments in quantum computing are highly promising, particularly in the realm of quantum chemistry. Due to the noisy nature of currently available quantum hardware, hybrid quantum-classical algorithms have emerged as a reliable option for near-term simulations. Mixed quantum-classical dynamics methods effectively capture nonadiabatic effects by integrating classical nuclear dynamics with quantum chemical computations of the electronic properties.

View Article and Find Full Text PDF

De novo peptide design exhibits great potential in materials engineering, particularly for the use of plastic-binding peptides to help remediate microplastic pollution. There are no known peptide binders for many plastics-a gap that can be filled with de novo design. Current computational methods for peptide design exhibit limitations in sampling and scaling that could be addressed with quantum computing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!