Photobases are a type of molecule that become more basic upon photoexcitation and can therefore be used to control proton transfer reactions with light. The solvation requirements for excited state proton transfer (ESPT) in photobase systems is poorly understood, which limits their applicability. Here, we investigate the solvation of the ESPT reaction using 5-methoxyquinoline (MeOQ), a well-studied photobase with an excited state p (p) of approximately 15.1, as a model system. Previous studies have shown that, in addition to the acidic donor that donates a proton to the photoexcited MeOQ, an additional "auxiliary donor" is necessary to solvate the resulting alkoxide. We investigate whether a nonacidic hydrogen bond donor (an alcohol solvent that MeOQ cannot deprotonate in bulk) can act as the auxiliary donor for the MeOQ ESPT reaction. First, we use steady state spectroscopy, TCSPC, and electronic structure calculations to show that MeOQ can deprotonate the acidic donor 2,2,2-trifluoroethanol (TFE, p = 12.5) using ethanol as the auxiliary donor. We show that the degree of ESPT is largely predicted by the degree of ground state hydrogen bonding between the photobase and the acidic donor. Next, we study the deprotonation of the acidic donors TFE and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP, p = 9.3) with MeOQ in a variety of nonacidic alcohol solvents of varying chain length and branching. MeOQ ESPT occurs to varying extents in all solvents, suggesting that all studied nonacidic alcohols can function as auxiliary donors. We show that the concentration of the acidic donor is strongly correlated with the degree of ESPT. These results are necessary fundamental steps toward the understanding of the photobase ESPT reaction and its wide application in a variety of chemical systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299183 | PMC |
http://dx.doi.org/10.1021/acs.jpca.4c02907 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!